新冠病毒肺炎抗体应答、细胞因子的动态变化及其与生存状况的关联 ——一项回顾性队列研究

Li Liu, Heng-Gui Chen, Ying Li, Huijun Li, Jiaoyuan Li, Yi Wang, Shuang Yao, Chuan Qin, Shutao Tong, Xu Yuan, Xia Luo, Xiaoping Miao, An Pan, Zheng Liu, Liming Cheng

工程(英文) ›› 2021, Vol. 7 ›› Issue (7) : 958-965.

PDF(2120 KB)
PDF(2120 KB)
工程(英文) ›› 2021, Vol. 7 ›› Issue (7) : 958-965. DOI: 10.1016/j.eng.2021.04.015
研究论文
Article

新冠病毒肺炎抗体应答、细胞因子的动态变化及其与生存状况的关联 ——一项回顾性队列研究

作者信息 +

Temporal Profiles of Antibody Responses, Cytokines, and Survival of COVID-19 Patients: A Retrospective Cohort

Author information +
History +

摘要

目前,患者感染严重急性呼吸综合征冠状病毒2型(SARS-CoV-2)后,机体免疫状况随时间的纵向变化及其与临床结局的关联尚不明确。因此,我们致力于研究新冠病毒特异性抗体[免疫球蛋白G(IgG)和免疫球蛋白M(IgM)]随时间变化的特征,并分析特异性抗体、炎性细胞因子及其与新冠病毒肺炎(COVID-19,简称新冠肺炎)患者的生存状况之间的关联。研究共招募了1830例实验室确诊的新冠肺炎感染病例。利用局部加权回归散点平滑法(LOWESS)拟合患者自发病以来直至12周的病毒载量、特异性抗体及细胞因子水平随时间的变化谱。通过中介分析,探究细胞因子在抗体应答与生存状况之间的中介效应。在1830例患者中,新冠病毒核酸阳性患者共1435例,新冠病毒特异性IgG和(或)IgM抗体阳性患者为395例。在1435例患者中,2.4%的患者在住院期间既未出现IgG也未出现IgM的血清学转变。特异性IgG和IgM的血清阳性率在发病后的第1周分别为29.6%和48.1%,并在5周内达到峰值。对于痊愈出院患者组,在发病后的12周内,IgM水平缓慢下降,而IgG水平基本维持在188 AU· mL−1左右。反之,对于最终进展为死亡的患者,其IgM水平迅速下降,IgG水平在第12周也下降至87 AU· mL−1。与出院患者组相比,病亡患者组的白细胞介素6(IL-6)、白细胞介素8(IL-8)、白细胞介素10(IL-10)、白细胞介素1β(IL-1β)、白细胞介素2受体(IL-2R)及肿瘤坏死因子-α(TNF-α)水平均较高,IgG水平与死亡风险之间12.5%的关联由上述细胞因子介导。本研究阐明了新冠病毒特异性抗体自发病以来12周内的实时变化特征,并表明了抗体应答对生存结局的积极作用,相关发现对新冠肺炎患者的预后评估可能有所帮助。

Abstract

The longitudinal immunologic status of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected patients and its association with the clinical outcome are barely known. Thus, we sought to analyze the temporal profiles of specific antibodies, as well as the associations between the antibodies, proinflammatory cytokines, and survival of patients with coronavirus disease 2019 (COVID-19). A total of 1830 laboratory-confirmed COVID-19 cases were recruited. The temporal profiles of the virus, antibodies, and cytokines of the patients until 12 weeks since illness onset were fitted by the locally weighted scatter plot smoothing method. The mediation effect of cytokines on the associations between antibody responses and survival were explored by mediation analysis. Of the 1830 patients, 1435 were detectable for
SARS-CoV-2, while 395 were positive in specific antibodies only. Of the 1435 patients, 2.4% presented seroconversion for neither immunoglobulin G (IgG) nor immunoglobulin M (IgM) during hospitalization. The seropositive rates of IgG and IgM were 29.6% and 48.1%, respectively, in the first week, and plateaued within five weeks. For the patients discharged from the hospital, the IgM decreased slowly, while high levels of IgG were maintained at around 188 AU·mL 1 for the 12 weeks since illness onset. In contrast, in the patients who subsequently died, IgM declined rapidly and IgG dropped to 87 AU mL 1 at the twelfth week. Elevated interleukin-6, interleukin-8, interleukin-10, interleukin-1b, interleukin-2R, and tumor necrosis factor-a levels were observed in the deceased patients in comparison with the discharged patients, and 12.5% of the association between IgG level and mortality risk was mediated by these cytokines. Our study deciphers the temporal profiles of SARS-CoV-2-specific antibodies within the 12 weeks since illness onset and indicates the protective effect of antibody response on survival, which may help to guide prognosis estimation.

关键词

新冠病毒肺炎 / 抗体应答 / 细胞因子 / 死亡率 / 病毒载量

Keywords

Coronavirus disease 2019 / Antibody response / Cytokine / Mortality / Viral load

引用本文

导出引用
Li Liu, Heng-Gui Chen, Ying Li. 新冠病毒肺炎抗体应答、细胞因子的动态变化及其与生存状况的关联 ——一项回顾性队列研究. Engineering. 2021, 7(7): 958-965 https://doi.org/10.1016/j.eng.2021.04.015

参考文献

[1]
Weekly operational update on COVID-19 [Internet]. Geneva: World Health Organization; 2020 Sep 4 [cited 2020 Sep 4]. Available from: https://www. who.int/docs/default-source/coronaviruse/situation-reports/wou-4-september2020-approved.pdf?sfvrsn=91215c78_2.
[2]
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323(11):1061–9.
[3]
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020;395(10223):507–13.
[4]
Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395(10229):1054–62.
[5]
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. China Medical Treatment Expert Group for COVID-19. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020;382(18):1708–20.
[6]
Zheng S, Fan J, Yu F, Feng B, Lou B, Zou Q, et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang Province, China, January–March 2020: retrospective cohort study. BMJ 2020;369:m1443.
[7]
Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Engl J Med 2020;382 (12):1177–9.
[8]
Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012;367(19):1814–20.
[9]
Memish ZA, Al-Tawfiq JA, Makhdoom HQ, Assiri A, Alhakeem RF, Albarrak A, et al. Respiratory tract samples, viral load, and genome fraction yield in patients with Middle East respiratory syndrome. J Infect Dis 2014;210(10):1590–4.
[10]
To KKW, Tsang OTY, Leung WS, Tam AR, Wu TC, Lung DC, et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect Dis 2020;20(5):565–74.
[11]
Long QX, Liu BZ, Deng HJ, Wu GC, Deng K, Chen YK, et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 2020;26(6):845–8.
[12]
Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science 2020;368(6490):473–4.
[13]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ; HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020;395(10229):1033–4.
[14]
Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, et al. Detectable serum severe acute respiratory syndrome coronavirus 2 viral load (RNAemia) is closely correlated with drastically elevated interleukin 6 level in critically Ill patients with coronavirus disease 2019. Clin Infect Dis 2020;71(8):1937–42.
[15]
National Health Commission of the Peoples’s Republic of China; National Administration of Traditional Chiese Medicine. [Diagnosis and treatment protocol for novel coronavirus pneumonia (trial version 7)]. Report. Beijing: The State Council for the Peoples’s Republic of China; 2020 Mar 3. Chinese.
[16]
Wang X, Tan Li, Wang Xu, Liu W, Lu Y, Cheng L, et al. Comparison of nasopharyngeal and oropharyngeal swabs for SARS-CoV-2 detection in 353 patients received tests with both specimens simultaneously. Int J Infect Dis 2020;94:107–9.
[17]
Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 1979;74(368):829–36.
[18]
McKinnon LR, Liebenberg LJ, Yende-Zuma N, Archary D, Ngcapu S, Sivro A, et al. Genital inflammation undermines the effectiveness of tenofovir gel in preventing HIV acquisition in women. Nat Med 2018;24(4):491–6.
[19]
Lee H, Herbert RD, McAuley JH. Mediation analysis. JAMA 2019;321(7):697–8.
[20]
Xiang F, Wang X, He X, Peng Z, Yang B, Zhang J, et al. Antibody detection and dynamic characteristics in patients with coronavirus disease 2019. Clin Infect Dis 2020;71(8):1930–4.
[21]
Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y, et al. Antibody responses to SARSCoV-2 in patients with novel coronavirus disease 2019. Clin Infect Dis 2020;71 (16):2027–34.
[22]
Röltgen K, Powell AE, Wirz OF, Stevens BA, Hogan CA, Najeeb J, et al. Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Sci Immunol 2020;5(54): eabe0240.
[23]
Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, et al. ENE-COVID Study Group. Prevalence of SARS-CoV-2 in Spain (ENECOVID): a nationwide, population-based seroepidemiological study. Lancet 2020;396(10250):535–44.
[24]
Hallal PC, Hartwig FP, Horta BL, Silveira MF, Struchiner CJ, Vidaletti LP, et al. SARS-CoV-2 antibody prevalence in Brazil: results from two successive nationwide serological household surveys. Lancet Glob Health 2020;8(11): e1390–8.
[25]
Long QX, Tang XJ, Shi QL, Li Q, Deng HJ, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 2020;26(8):1200–4.
[26]
Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ 2020;27(5):1451–4.
[27]
Chu CM, Poon LLM, Cheng VCC, Chan KS, Hung IFN, Wong MML, et al. Initial viral load and the outcomes of SARS. CMAJ 2004;171(11):1349–52.
[28]
Di Mauro G, Scavone C, Rafaniello C, Rossi F, Capuano A. SARS-CoV-2 infection: response of human immune system and possible implications for the rapid test and treatment. Int Immunopharmacol 2020;84:106519.
[29]
Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J Virol 2020;94(5): e02015–9.
[30]
Cao X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol 2020;20(5):269–70.
[31]
Zeng F, Huang Y, Guo Y, Yin M, Chen X, Xiao L, et al. Association of inflammatory markers with the severity of COVID-19: a meta-analysis. Int J Infect Dis 2020;96:467–74.
[32]
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Yi, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395 (10223):497–506.
[33]
Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, et al. Treatment of 5 critically ill patients with COVID-19 with convalescent plasma. JAMA 2020;323 (16):1582–9.
[34]
Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020;117 (17):9490–6.
[35]
Ahn JY, Sohn Y, Lee SH, Cho Y, Hyun JH, Baek YJ, et al. Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci 2020;35(14):e149.
[36]
Peng H, Gong T, Huang X, Sun X, Luo H, Wang W, et al. A synergistic role of convalescent plasma and mesenchymal stem cells in the treatment of severely Ill COVID-19 patients: a clinical case report. Stem Cell Res Ther 2020;11:291.
[37]
Hadjadj J, Yatim N, Barnabei L, Corneau A, Boussier J, Smith N, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020;369(6504):718–24.
PDF(2120 KB)

Accesses

Citation

Detail

段落导航
相关文章

/