大鼠周围神经诱发脑皮层电位时空图——一种研究脑对周围神经反应模式的新方法
殷晓峰 , 邓玖旭 , 陈博 , 金博 , 谷馨怡 , 齐志丹 , 冷坤鹏 , 姜保国
工程(英文) ›› 2022, Vol. 14 ›› Issue (7) : 147 -155.
大鼠周围神经诱发脑皮层电位时空图——一种研究脑对周围神经反应模式的新方法
A Temporal–Spatial Atlas of Peripheral Nerve Evoked Cortex Potential in Rat: A Novel Testbed to Explore the Responding Patterns of the Brain to Peripheral Nerves
将大脑作为一个整体,观察周围神经受到刺激后大脑反应的动态过程,是深入了解脑功能的基础,也是一个科学难题。本研究发展了一种新型大鼠脑皮层诱发电位微创正交记录方法,结果显示,在该方法下,刺激大鼠正中神经、尺神经和桡神经及其分支,首次获得了可重复、具有不同波形特点、可辨别的脑皮层诱发电位图谱,并将其时空变化规律以可视化的方式呈现出来。此外本研究也记录了正中神经离断4个月后,大鼠脑皮层诱发电位的变化。结果表明,大脑皮层对周围神经刺激的反应具有精确和可重复的时空顺序。本实验方法和波形图谱可作为测试平台用于探索周围神经系统和脑中枢神经系统之间的整体功能交互与动态重塑的时相机制。
Observing the dynamic progress of the brain in response to peripheral nerve stimulation as a whole is the basis for a deeper understanding of overall brain function; however, it remains a great challenge. In this work, a novel mini-invasive orthogonal recording method is developed to observe the overall evoked cortex potential (ECP) in rat brain. A typical ECP atlas with recognizable waveforms in the rat cortex corresponding to the median, ulnar, and radial nerve trunks and subdivided branches is acquired. Reproducible exciting temporal–spatial progress in the rat brain is obtained and visualized for the first time. Changes in the ECPs and exciting sequences in the cortex four months after median nerve transection are also observed. The results suggest that the brain's response to peripheral stimulation has precise and reproducible temporal–spatial properties. This resource can serve as a testbed to explore the overall functional interaction and dynamic remodeling mechanisms between the peripheral and central nervous systems over time.
Peripheral nerve / Brain / Evoked cortex potential / Temporal–spatial / Atlas
| Parameter | Median nerve | Muscular branch | Anterior interosseous nerve | Common palmar digital nerve (radial) | Common palmar digital nerve (median) | Common palmar digital nerve (ulnar) |
|---|---|---|---|---|---|---|
| Waveform | ||||||
| H lead | n1N2N3 | p1N1 | p1N1N2 | N | n1N2 | N1N2 |
| V lead | N1N2n3 | N1N2 | N1n2 | N | N | N1N2 |
| Latency | ||||||
| H lead (ms) | 1.21 ± 0.04 | 1.29 ± 0.04 | 1.30 ± 0.07 | 1.40 ± 0.05 | 1.45 ± 0.04 | 1.45 ± 0.06 |
| V lead (ms) | 1.25 ± 0.06 | 1.30 ± 0.04 | 1.29 ± 0.09 | 1.45 ± 0.10 | 1.50 ± 0.10 | 1.50 ± 0.03 |
| Parameter | H lead | V lead | |||||
|---|---|---|---|---|---|---|---|
| n1 | N2 | N3 | N4 | N1 | N2 | n3 | |
| Amplitude (μV) | 1.80 ± 1.20 | 8.37 ± 5.01 | 14.51 ± 9.43 | 8.12 ± 5.35 | 12.68 ± 10.70 | 24.96 ± 19.38 | 6.31 ± 4.96 |
| Peak time (ms) | 3.11 ± 0.44 | 8.38 ± 1.15 | 12.64 ± 2.35 | 30.46 ± 6.82 | 7.22 ± 2.74 | 10.67 ± 1.94 | 23.79 ± 1.77 |
| Parameter | Ulnar nerve | Dorsal digital nerve (radial) | Dorsal digital nerve (ulnar) | Cutaneous branch (radial) | Cutaneous branch (ulnar) |
|---|---|---|---|---|---|
| Waveform | |||||
| H lead | n1N2 | N | N | N | N |
| V lead | n1p1N2 | n1n2 | n1n2 | N1p1n2 | n |
| Latency | |||||
| H lead (ms) | 1.30 ± 0.06 | 1.35 ± 0.07 | 1.55 ± 0.06 | 1.51 ± 0.06 | 1.53 ± 0.08 |
| V lead (ms) | 1.25 ± 0.04 | 1.36 ± 0.06 | 1.50 ± 0.12 | 1.55 ± 0.07 | 1.52 ± 0.03 |
| Parameter | H lead | V lead | |||
|---|---|---|---|---|---|
| n1 | N2 | n1 | p1 | N2 | |
| Amplitude (μV) | 3.23 ± 0.79 | 27.47 ± 12.51 | 11.55 ± 11.54 | ‒9.94 ± 8.37 | 8.47 ± 8.96 |
| Peak time (ms) | 2.86 ± 0.39 | 12.76 ± 1.89 | 7.94 ± 2.77 | 13.53 ± 4.57 | 30.87 ± 4.78 |
| Patameter | Radial nerve | Triceps long head muscle branch | Triceps lateral head muscle branch | Radialis profundus | Radialis superficialis |
|---|---|---|---|---|---|
| Waveform | |||||
| H lead | P1N1N2N3 | P1N1N2 | p1n1N2 | N1p1N2 | n1n2 |
| V lead | n1p1N2 | n1p1n2n3 | n1p1n2 | p1n1n2 | n |
| Latency | |||||
| H lead (ms) | 1.28 ± 0.05 | 1.29 ± 0.06 | 1.30 ± 0.06 | 1.49 ± 0.07 | 1.46 ± 0.06 |
| V lead (ms) | 1.30 ± 0.06 | 1.31 ± 0.03 | 1.29 ± 0.07 | 1.47 ± 0.04 | 1.50 ± 0.08 |
| Parameter | H lead | V lead | ||||||
|---|---|---|---|---|---|---|---|---|
| P1 | N1 | N2 | N3 | n1 | p1 | N2 | ||
| Amplitude (μV) | ‒16.32 ± 9.32 | 18.60 ± 10.06 | 10.18 ± 10.65 | 11.60 ± 14.92 | 1.90 ± 1.93 | ‒2.38 ± 0.99 | 10.40 ± 6.98 | |
| Peak time (ms) | 2.59 ± 0.39 | 5.16 ± 0.80 | 13.07 ± 0.91 | 22.28 ± 3.01 | 2.59 ± 0.42 | 4.69 ± 0.84 | 22.06 ± 3.00 | |
| Parameter | H lead | V lead | |||
|---|---|---|---|---|---|
| n1 | N2 | N3 | N1 | N2 | |
| Amplitude (μV) | 6.47 ± 5.06 | 30.24 ± 18.65 | 52.34 ± 43.06 | 12.21 ± 6.91 | 14.83 ± 10.55 |
| Peak time (ms) | 2.92 ± 0.35 | 8.34 ± 0.94 | 12.40 ± 1.69 | 8.16 ± 0.88 | 14.16 ± 2.17 |
| Parameter | H lead | V lead | ||||
|---|---|---|---|---|---|---|
| P1 | N1 | N2 | n1 | p1 | n2 | |
| Amplitude (μV) | ‒21.56 ± 14.43 | 31.03 ± 19.48 | 60.60 ± 53.51 | 9.32 ± 6.29 | ‒5.40 ± 6.06 | 7.29 ± 4.46 |
| Peak time (ms) | 2.76 ± 1.11 | 6.64 ± 2.85 | 13.14 ± 1.68 | 3.36 ± 0.54 | 4.78 ± 0.39 | 13.91 ± 3.18 |
| [1] |
Alivisatos AP, Chun M, Church GM, Greenspan RJ, Roukes ML, Yuste R. The brain activity map project and the challenge of functional connectomics. Neuron 2012;74(6):970‒4. |
| [2] |
Bekhtereva NP. Certain general physiological principles of human brain functioning. Fiziol Cheloveka 1986;12(5):817‒30. Russian. |
| [3] |
Birbaumer N. Brain‒computer-interface research: coming of age. Clin Neurophysiol 2006;117(3):479‒83. |
| [4] |
Donoghue JP. Connecting cortex to machines: recent advances in brain interfaces. Nat Neurosci 2002;5(S11 Suppl):1085‒8. |
| [5] |
Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 2007;8(9):700‒11. |
| [6] |
Kempermann G, Gage FH. New nerve cells for the adult brain. Sci Am 1999;280(5):48‒53. |
| [7] |
Kempermann G, Kuhn HG, Winkler J, Gage FH. New nerve cells for the adult brain. Adult neurogenesis and stem cell concepts in neurologic research. Nervenarzt 1998;69(10):851‒7. German. |
| [8] |
Albanese SA, Spadaro JA, Lubicky JP, Henderson NA. Somatosensory cortical evoked potential changes after deformity correction. Spine 1991;16(8 Suppl):S371‒4. |
| [9] |
Allison T, McCarthy G, Luby M, Puce A, Spencer DD. Localization of functional regions of human mesial cortex by somatosensory evoked potential recording and by cortical stimulation. Electroencephalogr Clin Neurophysiol 1996;100(2):126‒40. |
| [10] |
Bai X, Towle VL, van Drongelen W, He B. Cortical potential imaging of somatosensory evoked potentials by means of the boundary element method in pediatric epilepsy patients. Brain Topogr 2011;23(4):333‒43. |
| [11] |
Custead R, Oh H, Rosner AO, Barlow S. Adaptation of the cortical somatosensory evoked potential following pulsed pneumatic stimulation of the lower face in adults. Brain Res 2015;1622:81‒90. |
| [12] |
Evilsizor MN, Ray-Jones HF, Ellis TWJr., Lifshitz J, Ziebell JM. Microglia in experimental brain injury: implications on neuronal injury and circuit remodeling. In: Kobeissy FH, editor. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Boca Raton: CRC Press/Taylor & Francis; 2015. |
| [13] |
Hirano M, Kubota S, Koizume Y, Tanaka S, Funase K. Different effects of implicit and explicit motor sequence learning on latency of motor evoked potential evoked by transcranial magnetic stimulation on the primary motor cortex. Front Hum Neurosci 2017;10:671. |
| [14] |
Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell 2012;148(6):1204‒22. |
| [15] |
Kondo R, Saito S, Kuroki A, Sato S, Katakura K, Kayama T. Significance and usefulness of corticospinal motor evoked potential monitoring for lesions adjacent to primary motor cortex. No To Shinkei 2004;56(6):496‒502. Japanese. |
| [16] |
Li BH, Lohmann JS, Schuler HG, Cronin AJ. Preservation of the cortical somatosensory-evoked potential during dexmedetomidine infusion in rats. Anesth Analg 2003;96(4):1155‒60. |
| [17] |
Rowed DW, Houlden DA, Basavakumar DG. Somatosensory evoked potential identification of sensorimotor cortex in removal of intracranial neoplasms. Can J Neurol Sci 1997;24(2):116‒20. |
| [18] |
Son EY, Ichida JK, Wainger BJ, Toma JS, Rafuse VF, Woolf CJ, et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 2011;9(3):205‒18. |
| [19] |
Zhang ZG, Chopp M. Promoting brain remodeling to aid in stroke recovery. Trends Mol Med 2015;21(9):543‒8. |
| [20] |
Zvereva ZF, Ravikovich MA, Sovetov AN. The electrophysiological characteristics of the compensatory and restorative processes in the central nervous system of neurosurgical patients in relation to the lateralization of the injury. Patol Fiziol Eksp Ter 1990;(4):22‒5. Russian. |
| [21] |
Crist RE, Lebedev MA. Multielectrode recording in behaving monkeys. In: Nicolelis MAL, editor. Methods for neural ensemble recordings. 2nd ed. Boca Raton: CRC Press; 2008. |
| [22] |
McNaughton BL, O’Keefe J, Barnes CA. The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods 1983;8(4):391‒7. |
| [23] |
Mathiesen C, Caesar K, Akgören N, Lauritzen M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J Physiol 1998;512(Pt 2):555‒66. |
| [24] |
Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsáki G. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J Neurophysiol 2000;84(1):390‒400. |
| [25] |
Jimbo Y, Robinson HP, Kawana A. Strengthening of synchronized activity by tetanic stimulation in cortical cultures: application of planar electrode arrays. IEEE Trans Biomed Eng 1998;45(11):1297‒304. |
| [26] |
Khazipov R, Zaynutdinova D, Ogievetsky E, Valeeva G, Mitrukhina O, Manent JB, et al. Atlas of the postnatal rat brain in stereotaxic coordinates. Front Neuroanat 2015;9:161. |
| [27] |
Paxinos G, Watson CR, Emson PC. AChE-stained horizontal sections of the rat brain in stereotaxic coordinates. J Neurosci Methods 1980;3(2):129‒49. |
| [28] |
Markram H. The human brain project. Sci Am 2012;306(6):50‒5. |
| [29] |
Abbott A. Neuroscience: solving the brain. Nature 2013;499(7458):272‒4. |
| [30] |
Underwood E. Neuroscience. Brain project draws presidential interest, but mixed reactions. Science 2013;339(6123):1022‒3. |
| [31] |
Leshner AI. Seize the neuroscience moment. Science 2013;342(6158):533. |
| [32] |
Wadman M. Behind the scenes of a brain-mapping moon shot. Nature 2013;495(7439):19. |
| [33] |
Benison AM, Rector DM, Barth DS. Hemispheric mapping of secondary somatosensory cortex in the rat. J Neurophysiol 2007;97(1):200‒7. |
| [34] |
Kimura J. Kugelberg lecture. Principles and pitfalls of nerve conduction studies. Electroencephalogr Clin Neurophysiol Suppl 1999;50:12‒5. |
()
/
| 〈 |
|
〉 |