多组学导向的链霉菌1647产生的奥米克欣的发现——一组抗甲型流感病毒和冠状病毒HCoV-229E的活性类四肽化合物

Hongmin Sun, Xingxing Li, Minghua Chen, Ming Zhong, Yihua Li, Kun Wang, Yu Du, Xin Zhen, Rongmei Gao, Yexiang Wu, Yuanyuan Shi, Liyan Yu, Yongsheng Che, Yuhuan Li, Jian-Dong Jiang, Bin Hong, Shuyi Si

工程(英文) ›› 2022, Vol. 16 ›› Issue (9) : 176-186.

PDF(3697 KB)
PDF(3697 KB)
工程(英文) ›› 2022, Vol. 16 ›› Issue (9) : 176-186. DOI: 10.1016/j.eng.2021.05.010
研究论文
Article

多组学导向的链霉菌1647产生的奥米克欣的发现——一组抗甲型流感病毒和冠状病毒HCoV-229E的活性类四肽化合物

作者信息 +

Multi-Omics-Guided Discovery of Omicsynins Produced by Streptomyces sp. 1647: Pseudo-Tetrapeptides Active Against Influenza A Viruses and Coronavirus HCoV-229E

Author information +
History +

摘要

微生物具有产生抗病毒抗生素以保护细胞存活的机制。链霉菌(Streptomyces sp.)1647 是20 世纪70 年代从中国南方土壤中分离的一株链霉菌,其发酵液显示优良的抗甲型流感病毒(IAV)活性,但其抗病毒活性成分始终没有得到有效的分离和结构鉴定。本研究综合利用多组学研究策略,从这株链霉菌中成功分离得到抗病毒活性成分。利用抗生素及次级代谢产物分析软件(antiSMASH)分析该菌株的基因组序列信息,发现其中可能含有38 个次级代谢产物生物合成基因簇(BGC)。经过生物活性导向的比较转录组学分析,初步锁定三个可能的目标抗病毒活性化合物的生物合成基因簇。通过生物信息学分析及对基因簇36 中调节基因和生物合成基因的遗传操作,确定了基因簇36 为抗病毒活性化合物的生物合成基因簇。对野生株和不同重组菌株发酵产物进行基于生物活性导向的质谱数据分子网络分析,初步确定了抗病毒成分是一组化学结构类似物。最后通过高分辨质谱和二维核磁共振波谱分析,确定了抗病毒活性成分为包括18 个含有脲基的类四肽结构,取名奥米克欣(omicsynin)A1~A6、奥米克欣B1~B6 和奥米克欣C1~C6,其中11 个(奥米克欣A1、奥米克欣A2、奥米克欣A6、奥米克欣B1~B3、奥米克欣B5、奥米克欣B6、奥米克欣C1、奥米克欣C2 和奥米克欣C6)是新结构化合物。奥米克欣B1~B4 显示出优良的抗甲型流感病毒活性,其50%抑制浓度(IC50)在1 μmol·L−1左右,选择指数(SI)为100~300。奥米克欣B1~B4 同时显示出对人冠状病毒HCoV-229E的显著抑制活性。综上,通过综合利用多组学技术与数据分析,从链霉菌1647 发酵产物中发现了一组新型的具有抗病毒活性的类四肽化合物,说明微生物次级代谢产物是新型抗病毒抗生素的宝贵资源。

Abstract

Many microorganisms have mechanisms that protect cells against attack from viruses. The fermentation components of Streptomyces sp. 1647 exhibit potent anti-influenza A virus (IAV) activity. This strain was isolated from soil in southern China in the 1970s, but the chemical nature of its antiviral substance(s) has remained unknown until now. We used an integrated multi-omics strategy to identify the antiviral agents from this streptomycete. The antibiotics and Secondary Metabolite Analysis Shell (antiSMASH) analysis of its genome sequence revealed 38 biosynthetic gene clusters (BGCs) for secondary metabolites, and the target BGCs possibly responsible for the production of antiviral components were narrowed down to three BGCs by bioactivity-guided comparative transcriptomics analysis. Through bioinformatics analysis and genetic manipulation of the regulators and a biosynthetic gene, cluster 36 was identified as the BGC responsible for the biosynthesis of the antiviral compounds. Bioactivity-based molecular networking analysis of mass spectrometric data from different recombinant strains illustrated that the antiviral compounds were a class of structural analogues. Finally, 18 pseudo-tetrapeptides with an internal ureido linkage, omicsynins A1–A6, B1–B6, and C1–C6, were identified and/or isolated from fermentation broth. Among them, 11 compounds (omicsynins A1, A2, A6, B1–B3, B5, B6, C1, C2, and C6) are new compounds. Omicsynins B1–B4 exhibited potent antiviral activity against IAV with the 50% inhibitory concentration (IC50) of approximately 1 µmol∙L–1 and a selectivity index (SI) ranging from 100 to 300. Omicsynins B1–B4 also showed significant antiviral activity against human coronavirus HCoV-229E. By integrating multi-omics data, we discovered a number of novel antiviral pseudo-tetrapeptides produced by Streptomyces sp. 1647, indicating that the secondary metabolites of microorganisms are a valuable source of novel antivirals.

关键词

多组学 / 抗甲型流感病毒 / 抗冠状病毒 / 链霉菌1647 / 类四肽化合物

Keywords

Multi-omics / Anti-influenza A virus / Anti-coronavirus / Streptomyces sp. 1647 / Pseudo-tetrapeptides

引用本文

导出引用
Hongmin Sun, Xingxing Li, Minghua Chen. 多组学导向的链霉菌1647产生的奥米克欣的发现——一组抗甲型流感病毒和冠状病毒HCoV-229E的活性类四肽化合物. Engineering. 2022, 16(9): 176-186 https://doi.org/10.1016/j.eng.2021.05.010

参考文献

[1]
WHO. Coronavirus disease (COVID-19) weekly epidemiological update and weekly operational update—situation reports [Internet]. Geneva: World Health Organization; [cited 2021 Apr 30]. Available from: https://www.who.int/ emergencies/diseases/novel-coronavirus-2019/situation-reports.
[2]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 2020;83(3):770–803.
[3]
Takizawa N, Yamasaki M. Current landscape and future prospects of antiviral drugs derived from microbial products. J Antibiot 2018;71(1):45–52.
[4]
Martinez JP, Sasse F, Brönstrup M, Diez J, Meyerhans A. Antiviral drug discovery: broad-spectrum drugs from nature. Nat Prod Rep 2015;32 (1):29–48.
[5]
Bérdy J. Bioactive microbial metabolites. J Antibiot 2005;58(1):1–26.
[6]
Williams R, Hoehn M, inventors; ELI LILLY AND CO., assignee. Pyrazomycin and process for production. United States patent US 3802999. 1974 Sep 4.
[7]
Sagar S, Kaur M, Minneman KP. Antiviral lead compounds from marine sponges. Mar Drugs 2010;8(10):2619–38.
[8]
Yoon JS, Kim G, Jarhad DB, Kim HR, Shin YS, Qu S, et al. Design, synthesis, and anti-RNA virus activity of 60 -fluorinated-aristeromycin analogues. J Med Chem 2019;62(13):6346–62.
[9]
Kusaka T, Yamamoto H, Shibata M, Muroi M, Kishi T, Mizuno K. Streptomyces citricolor nov. sp. and a new antibiotic, aristeromycin. J Antibiot 1968;21 (4):255–63.
[10]
Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces genetics. Norwich: John Innes Foundation; 2000.
[11]
Hong B, Phornphisutthimas S, Tilley E, Baumberg S, McDowall KJ. Streptomycin production by Streptomyces griseus can be modulated by a mechanism not associated with change in the adpA component of the A-factor cascade. Biotechnol Lett 2006;29(1):57–64.
[12]
Bierman M, Logan R, O’Brien K, Seno ET, Nagaraja Rao R, Schoner BE. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 1992;116(1):43–9.
[13]
Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 2011;696(696):291–303.
[14]
Yin J, Ma L, Wang H, Yan H, Hu J, Jiang W, et al. Chinese herbal medicine compound Yi-Zhi-Hao pellet inhibits replication of influenza virus infection through activation of heme oxygenase-1. Acta Pharm Sin B 2017;7(6):630–7.
[15]
Pizzi M. Sampling variation of the fifty percent end-point, determined by the Reed-Muench (Behrens) method. Hum Biol 1950;22(3):151–90.
[16]
Zhong M, Wang HQ, Yan HY, Wu S, Gu ZY, Li YH. Santin inhibits influenza A virus replication through regulating MAPKs and NF-jB pathways. J Asian Nat Prod Res 2019;21(12):1205–14.
[17]
Wang H, Zhang D, Ge M, Li Z, Jiang J, Li Y. Formononetin inhibits enterovirus 71 replication by regulating COX-2/PGE2 expression. Virol J 2015;12(1):35.
[18]
Jiang Z, Li X, Ren W, Shi Y, Gao R, Li Y, et al. Discovery of siderophore compounds using genome mining strategy. Chin Med Biotechnol 2019;14 (2):97–107. Chinese.
[19]
Escolar L, Pe´ rez-Marti´n J, de Lorenzo V. Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 1999;181(20):6223–9.
[20]
Maxson T, Tietz JI, Hudson GA, Guo XR, Tai HC, Mitchell DA. Targeting reactive carbonyls for identifying natural products and their biosynthetic origins. J Am Chem Soc 2016;138(46):15157–66.
[21]
Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol 2016;34(8):828–37.
[22]
Lai CJS, Zha L, Liu DH, Kang L, Ma X, Zhan ZL, et al. Global profiling and rapid matching of natural products using diagnostic product ion network and in silico analogue database: Gastrodia elata as a case study. J Chromatogr A 2016;1456:187–95.
[23]
Wang Q, Zhang Y, Wang M, Tan Y, Hu X, He H, et al. Neo-actinomycins A and B, natural actinomycins bearing the 5H-oxazolo[4,5-b]phenoxazine chromophore, from the marine-derived Streptomyces sp. IMB094. Sci Rep 2017;7(1):3591.
[24]
Fujii K, Ikai Y, Oka H, Suzuki M, Harada KI. A nonempirical method using LC/MS for determination of the absolute configuration of constituent amino acids in a peptide: combination of Marfey’s method with mass spectrometry and its practical application. Anal Chem 1997;69(24):5146–51.
[25]
Hamano K, Tanzawa K, Takahashi M, Enokida R, Okazaki H, Kinoshita T, et al., inventors; SANKYO Co., Ltd., assignee. Chymostatinols manufacture with Streptomyces for treatment of osteoporosis. Japanese patent JP 08003188 A. 1996 Jan 9.
[26]
Konda Y, Takahashi Y, Arima S, Sato N, Takeda K, Dobashi K, et al. First total synthesis of Mer-N5075A and a diastereomeric mixture of a and b-MAPI, new HIV-I protease inhibitors from a species of Streptomyces. Tetrahedron 2001;57 (20):4311–21.
[27]
Hoebeke J, Busatto-Samsoen C, Davoust D, Lebrun E. 1 H NMR study of the diastereomeric forms of the protease inhibitor antipain. Magn Reson Chem 1994;32(4):220–4.
[28]
Jiang P. Preliminary research on antiviral drugs and vaccines [dissertation]. Beijing: Peking University; 2005. Chinese.
[29]
Nothias LF, Nothias-Esposito M, da Silva R, Wang M, Protsyuk I, Zhang Z, et al. Bioactivity-based molecular networking for the discovery of drug leads in natural product bioassay-guided fractionation. J Nat Prod 2018;81(4):758–67.
[30]
Kim ES. Midostaurin: first global approval. Drugs 2017;77(11):1251–9.
[31]
Suda H, Aoyagi T, Hamada M, Takeuchi T, Umezawa H. Antipain, a new protease inhibitor isolated from actinomycetes. J Antibiot 1972;25(4):263–6.
[32]
Umezawa H, Aoyagi T, Morishima H, Kunimoto S, Matsuzaki M, Hamada M, et al. Chymostatin, a new chymotrypsin inhibitor produced by actinomycetes. J Antibiot 1970;23(8):425–7.
[33]
Umezawa H, Aoyagi T, Okura A, Morishima H, Takeuchi T, Okami Y. Letter: elastatinal, a new elastase inhibitor produced by actinomycetes. J Antibiot 1973;26(12):787–9.
[34]
Appleyard G, Tisdale M. Inhibition of the growth of human coronavirus 229E by leupeptin. J Gen Virol 1985;66(2):363–6.
[35]
Molla A, Hellen CU, Wimmer E. Inhibition of proteolytic activity of poliovirus and rhinovirus 2A proteinases by elastase-specific inhibitors. J Virol 1993;67 (8):4688–95.
[36]
Tashiro M, Klenk HD, Rott R. Inhibitory effect of a protease inhibitor, leupeptin, on the development of influenza pneumonia, mediated by concomitant bacteria. J Gen Virol 1987;68(7):2039–41.
PDF(3697 KB)

Accesses

Citation

Detail

段落导航
相关文章

/