
网络空间内生安全
Cyberspace Endogenous Safety and Security
基于未知漏洞后门等产生的不确定威胁是当前网络空间最为严峻和棘手的安全问题。本文分析了系统漏洞后门等“暗功能”存在的哲学与技术层面的原因,并作为系统“内生安全问题”存在的必然性依据,指出“内生安全问题”在理论和工程层面不可能完全彻底地消除,需要“开发或利用”系统架构自身的“内源性安全功能”,使目标对象能够通过“内生的安全体制机制”来有效规避或化解内生安全问题可能引发的安全风险。文中给出了网络空间内生安全的定义和期望的体制机制及其主要技术特征,介绍了基于动态异构冗余架构的内生安全体制机制及其内生安全特性,阐述了创新的基于DHR架构的编码信道理论内涵。
Uncertain security threats caused by vulnerabilities and backdoors are the most serious and difficult problem in cyberspace. This paper analyzes the philosophical and technical causes of the existence of so-called “dark functions” such as system vulnerabilities and backdoors, and points out that endogenous security problems cannot be completely eliminated at the theoretical and engineering levels; rather, it is necessary to develop or utilize the endogenous security functions of the system architecture itself. In addition, this paper gives a definition for and lists the main technical characteristics of endogenous safety and security in cyberspace, introduces endogenous security mechanisms and characteristics based on dynamic heterogeneous redundancy (DHR) architecture, and describes the theoretical implications of a coding channel based on DHR.
网络空间内生安全问题 / 不确定威胁 / 网络空间内生安全 / 相对正确公理 / 动态异构冗余架构
Cyberspace endogenous security problem / Uncertain threat / Cyberspace endogenous safety and security / Relative right axiom / Dynamic heterogeneous redundant architecture
[1] |
Wu J. [Introduction to cyberspace mimic defense]. Beijing: Science Press; 2017. Chinese.
|
[2] |
Wu J. [Principle of cyberspace mimic defense: endogenous safety–security & generalized robust control]. Beijing: Science Press; 2018. Chinese.
|
[3] |
Wu J. Cyberspace mimic defense: generalized robust control and endogenous safety–security. Berlin: Springer International Publishing; 2019.
|
[4] |
Wu J. [Endogenous safety and security in cyberspace: mimic defense and generalized robust control]. Beijing: Science Press; 2020. Chinese.
|
[5] |
Nie C, Zhao X, Chen K, Han Z. An Software vulnerability number prediction model based on micro-parameters. Comput Res Dev 2011;48(7):1279–87. Chinese.
|
[6] |
Shannon CE, Weaver W. The mathematical theory of communication. Urbana: University of Illinois Press; 1949.
|
/
〈 |
|
〉 |