基于紧缩McCormick方法的热电联合系统优化调度策略

Lirong Deng, Hongbin Sun, Baoju Li, Yong Sun, Tianshu Yang, Xuan Zhang

工程(英文) ›› 2021, Vol. 7 ›› Issue (8) : 1076-1086.

PDF(1981 KB)
PDF(1981 KB)
工程(英文) ›› 2021, Vol. 7 ›› Issue (8) : 1076-1086. DOI: 10.1016/j.eng.2021.06.006
研究论文
Article

基于紧缩McCormick方法的热电联合系统优化调度策略

作者信息 +

Optimal Operation of Integrated Heat and Electricity Systems: A Tightening McCormick Approach

Author information +
History +

摘要

质量流量可调的热电联合系统可以提高能源系统的灵活性、经济性和可持续发展能力。但是,考虑质量流量可调的热电联合系统的优化运行问题是一个高度非凸非线性的问题,主要体现在热力网络模型中的双线性项,即质量流量和节点温度的乘积。现有的方法,如非线性优化、广义Benders分解方法和凸松弛技术等,在求解质量和计算性能上仍然存在不足。为了解决这一问题,本文首先建立了基于质量-流量调节的区域供热网络的基础模型,并通过等效变换和变量代换对基础模型进行了重构。该重构模型减少了非凸约束和双线性项,而且在不失去最优性的前提下,加快了求解过程。然后,文中分别建立了电力网络模型和能源模型,结合之前构造的供热网络模型,建立起热电联合系统优化调度模型。为了松弛联合调度模型中剩余的双线性项,文中采用McCormick包络的凸松弛方法,得到了联合调度模型的目标函数下界。为了提高McCormick松弛的质量,文中提出了一种紧缩McCormick的方法:首先 ,采用分段McCormick技术,将双线性项中一个变量的可行域划分为几个不相交的区域,通过求解此优化问题可以选出最优解所在的区域,从而缩小了被划分变量的可行域;然后,提出了一种启发式的边界收缩算法来进一步压缩分段McCormick技术得到的缩小版可行域,并恢复了此最优解附近的可行解。算例分析表明,与原对偶内点法和求得全局最优解的双线性求解器提供的方法相比,本文提出的紧缩McCormick方法能快速求解热电联合运行问题,得到令人满意的兼具最优性和可行性的调度结果。

Abstract

Combined heat and electricity operation with variable mass flow rates promotes flexibility, economy, and sustainability through synergies between electric power systems (EPSs) and district heating systems (DHSs). Such combined operation presents a highly nonlinear and nonconvex optimization problem, mainly due to the bilinear terms in the heat flow model—that is, the product of the mass flow rate and the nodal temperature. Existing methods, such as nonlinear optimization, generalized Benders decomposition, and convex relaxation, still present challenges in achieving a satisfactory performance in terms of solution quality and computational efficiency. To resolve this problem, we herein first reformulate the district heating network model through an equivalent transformation and variable substitution. The reformulated model has only one set of nonconvex constraints with reduced bilinear terms, and the remaining constraints are linear. Such a reformulation not only ensures optimality, but also accelerates the solving process. To relax the remaining bilinear constraints, we then apply McCormick envelopes and obtain an objective lower bound of the reformulated model. To improve the quality of the McCormick relaxation, we employ a piecewise McCormick technique that partitions the domain of one of the variables of the bilinear terms into several disjoint regions in order to derive strengthened lower and upper bounds of the partitioned variables. We propose a heuristic tightening method to further constrict the strengthened bounds derived from the piecewise McCormick technique and recover a nearby feasible solution. Case studies show that, compared with the interior point method and the method implemented in a global bilinear solver, the proposed tightening McCormick method quickly solves the heat-electricity operation problem with an acceptable feasibility check and optimality.

关键词

热电联合系统 / 凸松弛 / 优化运行 / McCormick包络

Keywords

Integrated heat and electricity system / Convex relaxation / Operation / McCormick envelopes

引用本文

导出引用
Lirong Deng, Hongbin Sun, Baoju Li. 基于紧缩McCormick方法的热电联合系统优化调度策略. Engineering. 2021, 7(8): 1076-1086 https://doi.org/10.1016/j.eng.2021.06.006

参考文献

[1]
IUte C. Renewable heat policies. Report. Paris: IEA; 2018 Jan.
[2]
State of Green. District energy: green heating and cooling for urban areas. Report. Denmark: State of Green; 2020 May.
[3]
Østergaard PA, Lund H. A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating. Appl Energy 2011;88 (2):479–87.
[4]
Liu X, Wu J, Jenkins N, Bagdanavicius A. Combined analysis of electricity and heat networks. Appl Energy 2016;162:1238–50.
[5]
Sheng T, Guo Q, Sun H, Pan Z, Zhang J. Two-stage state estimation approach for combined heat and electric networks considering the dynamic property of pipelines. Energy Procedia 2017;142:3014–9.
[6]
Li Z, Wu W, Wang J, Zhang B, Zheng T. Transmission-constrained unit commitment considering combined electricity and district heating networks. IEEE Trans Sustain Energy 2015;7(2):480–92.
[7]
Lin C, Wu W, Zhang B, Sun Y. Decentralized solution for combined heat and power dispatch through benders decomposition. IEEE Trans Sustain Energy 2017;8(4):1361–72.
[8]
Pan Z, Guo Q, Sun H. Feasible region method based integrated heat and electricity dispatch considering building thermal inertia. Appl Energy 2017;192:395–407.
[9]
Xue Y, Li Z, Lin C, Guo Q, Sun H. Coordinated dispatch of integrated electric and district heating systems using heterogeneous decomposition. IEEE Trans Sustain Energy 2019;11(4):1495–507.
[10]
Deng L, Li Z, Sun H, Guo Q, Xu Y, Chen R, et al. Generalized locational marginal pricing in a heat-and-electricity-integrated market. IEEE Trans Smart Grid 2019;10(6):6414–25.
[11]
Deng L, Zhang X, Sun H. Real-time autonomous trading in the electricity-andheat distribution market based on blockchain. In: 2019 IEEE Power Energy Society General Meeting; 2019 Aug 4–8; Atlanta, GA, USA. New York: IEEE; 2019. p. 1–5.
[12]
Kopanos GM, Georgiadis MC, Pistikopoulos EN. Energy production planning of a network of micro combined heat and power generators. Appl Energy 2013;102:1522–34.
[13]
Zidan A, Gabbar HA, Eldessouky A. Optimal planning of combined heat and power systems within microgrids. Energy 2015;93(Pt 1):235–44.
[14]
Li Z, Wu W, Shahidehpour M, Wang J, Zhang B. Combined heat and power dispatch considering pipeline energy storage of district heating network. IEEE Trans Sustain Energy 2015;7(1):12–22.
[15]
Chen Y, Guo Q, Sun H, Li Z, Pan Z, Wu W. A water mass method and its application to integrated heat and electricity dispatch considering thermal inertias. Energy 2019;181:840–52.
[16]
Huang S, Tang W, Wu Q, Li C. Network constrained economic dispatch of integrated heat and electricity systems through mixed integer conic programming. Energy 2019;179:464–74.
[17]
Lu S, Gu W, Zhang C, Meng K, Dong Z. Hydraulic-thermal cooperative optimization of integrated energy systems: a convex optimization approach. IEEE Trans Smart Grid 2020;11(6):4818–32.
[18]
Jiang Y, Wan C, Botterud A, Song Y, Shahidehpour M. Convex relaxation of combined heat and power dispatch. 2020. arXiv:2006.04028v1.
[19]
Gupte A. Mixed integer bilinear programming with applications to the pooling problem [dissertation]. Atlanta: Georgia Institute of Technology; 2012.
[20]
Castro PM. Tightening piecewise McCormick relaxations for bilinear problems. Comput Chem Eng 2015;72:300–11.
[21]
Gurobi optimizer reference manual. Beaverton: Gurobi Optimization, LLC;2020.
[22]
Liu X. Combined analysis of electricity and heat networks [dissertation]. Cardiff: Cardiff University; 2013.
[23]
Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD). CJJ 34–2010: Design code for city heating network. Chinese standard. Beijing: China Architecture Publishing & Media Co., Ltd.; 2010. Chinese.
[24]
Yang J, Zhang N, Kang C, Xia Q. A State-independent linear power flow model with accurate estimation of voltage magnitude. IEEE Trans Power Syst 2017;32 (5):3607–17.
[25]
Sjödin J, Henning D. Calculating the marginal costs of a district-heating utility. Appl Energy 2004;78(1):1–18.
[26]
Chen X, Kang C, O’Malley M, Xia Q, Bai J, Liu C, et al. Increasing the flexibility of combined heat and power for wind power integration in China: modeling and implications. IEEE Trans Power Syst 2014;30(4):1848–57.
[27]
Zimmerman RD, Murillo-Sánchez CE, Gan D. MATPOWER: a MATLAB power system simulation package. Version 3.2. New York: Power Systems Engineering Research Center; 1997.
[28]
Kalambe S, Agnihotri G. Loss minimization techniques used in distribution network: bibliographical survey. Renew Sustain Energy Rev 2014;29:184–200.
[29]
Eldridge B, O’Neill R, Castillo A. An improved method for the DCOPF with losses. IEEE Trans Power Syst 2017;33(4):3779–88.
[30]
Ramos ER, Martinez-Ramos JL, Exposito AG, Salado AJU. Optimal reconfiguration of distribution networks for power loss reduction. In: 2001 IEEE Porto Power Tech Proceedings; 2001 Sep 10–13; Porto, Portugal. New York: IEEE; 2001.
[31]
McCormick GP. Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math Program 1976;10 (1):147–75.
[32]
Karuppiah R, Grossmann IE. Global optimization for the synthesis of integrated water systems in chemical processes. Comput Chem Eng 2006;30(4):650–73.
[33]
Chen S, Conejo AJ, Sioshansi R, Wei Z. Unit commitment with an enhanced natural gas-flow model. IEEE Trans Power Syst 2019;34(5):3729–38.
[34]
Deng L. Test data for the day-ahead planning problem of integrated heat and electricity systems [Internet]. Shenzhen: Tsinghua–Berkeley Shenzhen Institute; 2020 [cited 2020 Aug 8]. Available from: https://docs.google.com/ spreadsheets/d/1px21mm7BfATtTo11SStwiEEBSSpwy4JAP6Sn7O6TX_U.
PDF(1981 KB)

Accesses

Citation

Detail

段落导航
相关文章

/