互联微电网可编程自适应安全扫描

Zimin Jiang, Zefan Tang, Peng Zhang, Yanyuan Qin

工程(英文) ›› 2021, Vol. 7 ›› Issue (8) : 1087-1100.

PDF(4725 KB)
PDF(4725 KB)
工程(英文) ›› 2021, Vol. 7 ›› Issue (8) : 1087-1100. DOI: 10.1016/j.eng.2021.06.007
研究论文
Article

互联微电网可编程自适应安全扫描

作者信息 +

Programmable Adaptive Security Scanning for Networked Microgrids

Author information +
History +

摘要

现代微电网的重要特征是其核心的分布式能源和控制系统普遍依赖网络通信和软件系统。信息与物理系统的集成使得微电网获得了极佳的分布可控性、可扩展性和可观性;然而,恶意网络攻击者由此亦可以利用微电网信息物理系统中各种潜在的漏洞对微电网实施破坏。本文提出一种可编程自适应安全扫描(PASS)技术,用以保护电力电子化微电网系统免受各类电力机器人(power bot)的攻击。这一新技术尤其可以有效抵御三种危害性较大的攻击,即控制器操纵攻击、重放攻击和注入攻击。可编程自适应扫描融合软件定义网络与新的协同检测方法;这一新的安全措施可以使得微电网的互联具有超高的弹性和安全性、低成本与高度自动化等优点。协同检测结合了主动同步扫描和混沌检测两类新技术,可以有效识别电力机器人攻击的类型并对各类攻击快速定位,且不会中断或影响互联微电网的正常运行。可编程自适应安全扫描技术的有效性和实用性在大量实验中得到了确证。

Abstract

Communication-dependent and software-based distributed energy resources (DERs) are extensively integrated into modern microgrids, providing extensive benefits such as increased distributed controllability, scalability, and observability. However, malicious cyber-attackers can exploit various potential vulnerabilities. In this study, a programmable adaptive security scanning (PASS) approach is presented to protect DER inverters against various power-bot attacks. Specifically, three different types of attacks, namely controller manipulation, replay, and injection attacks, are considered. This approach employs both software-defined networking technique and a novel coordinated detection method capable of enabling programmable and scalable networked microgrids (NMs) in an ultra-resilient, time-saving, and autonomous manner. The coordinated detection method efficiently identifies the location and type of power-bot attacks without disrupting normal NM operations. Extensive simulation results validate the efficacy and practicality of the PASS for securing NMs.

关键词

互联微电网 / 可编程自适应安全扫描 / 协同检测 / 软件定义网络

Keywords

Networked microgrids / Programmable adaptive security scanning / Coordinated detection / Software defined networking

引用本文

导出引用
Zimin Jiang, Zefan Tang, Peng Zhang. 互联微电网可编程自适应安全扫描. Engineering. 2021, 7(8): 1087-1100 https://doi.org/10.1016/j.eng.2021.06.007

参考文献

[1]
Zhang P. Networked microgrids. Cambridge: Cambridge University Press; 2021.
[2]
Tang Z, Zhang P, Krawec WO, Jiang Z. Programmable quantum networked microgrids. IEEE Trans Quantum Engineer 2020;1:1–13.
[3]
Tang Z, Qin Y, Jiang Z, Krawec WO, Zhang P. Quantum-secure microgrid. IEEE Trans Power Syst 2021;36(2):1250–63.
[4]
Lu LY, Liu HJ, Zhu H, Chu CC. Intrusion detection in distributed frequency control of isolated microgrids. IEEE Trans Smart Grid 2019;10(6):6502–15.
[5]
Farhady H, Lee H, Nakao A. Software-defined networking: a survey. Comput Netw 2015;81:79–95.
[6]
Tang Z, Zhang P, Krawec WO. A quantum leap in microgrids security: the prospects of quantum-secure microgrid. IEEE Electrific Mag 2021;9(1):66–73.
[7]
Hatziargyriou ND, Kleftakis V, Papadimitriou CN, Messinis G. Microgrids in distribution. In: Liu CC, MaArthur S, Lee SJ, editors. Smart grid handbook. Hoboken: John Wiley & Sons, Ltd.; 2016.
[8]
Zhang P, Wang B, Luh PB, Ren L, Qin Y, inventors; University of Connecticut, assignee. Enabling resilient microgrid through ultra-fast programmable network. United States patent US 20170324671. 2017 Apr 28.
[9]
Wang L, Qin Y, Tang Z, Zhang P. Software-defined microgrid control: the genesis of decoupled cyber–physical microgrids. IEEE Open Access J Power Energy 2020;7:173–82.
[10]
Huang T, Satchidanandan B, Kumar PR, Xie L. An online detection framework for cyber attacks on automatic generation control. IEEE Trans Power Syst 2018;33(6):6816–27.
[11]
Ravichandran MT. Resilient monitoring and control systems: design, analysis, and performance evaluation [dissertation]. Michigan: University of Michigan; 2015.
[12]
Li Y, Zhang P, Zhang L, Wang B. Active synchronous detection of deception attacks in microgrid control systems. IEEE Trans Smart Grid 2017;8(1):373–5.
[13]
Pan K, Teixeira A, Cvetkovic M, Palensky P. Cyber risk analysis of combined data attacks against power system state estimation. IEEE Trans Smart Grid 2019;10(3):3044–56.
[14]
Skopik F, Smith PD, editors. Smart grid security: innovative solutions for a modernized grid. Burlington: Syngress; 2015.
[15]
Kurt MN, Yilmaz Y, Wang X. Real-time detection of hybrid and stealthy cyberattacks in smart grid. IEEE Trans Inform Forensics Security 2019;14 (2):498–513.
[16]
Manandhar K, Cao X, Hu F, Liu Y. Detection of faults and attacks including false data injection attack in smart grid using Kalman filter. IEEE Trans Cont Network Syst 2014;1(4):370–9.
[17]
Tang Z, Jiao J, Zhang P, Yue M, Chen C, Yan J. Enabling cyberattack-resilient load forecasting through adversarial machine learning. 2020. arXiv:2001.02289.
[18]
Tan S, De D, Song WZ, Yang J, Das SK. Survey of security advances in smart grid: a data driven approach. IEEE Comm Surv Tutor 2017;19(1): 397–422.
[19]
Musleh AS, Chen G, Dong ZY. A survey on the detection algorithms for false data injection attacks in smart grids. IEEE Trans Smart Grid 2020;11 (3):2218–34.
[20]
Wang J, Qin Y, Tang Z, Zhang P. Software-defined cyber–energy secure underwater wireless power transfer. IEEE J Emerg Sel Topics Ind Electron 2021;2(1):21–31.
[21]
He Y, Mendis GJ, Wei J. Real-time detection of false data injection attacks in smart grid: a deep learning-based intelligent mechanism. IEEE Trans Smart Grid 2017;8(5):2505–16.
[22]
Babahajiani P, Wang L, Liu J, Zhang P. Push-sum-enabled resilient microgrid control. IEEE Trans Smart Grid. In press.
[23]
Ren L, Qin Y, Wang B, Zhang P, Luh PB, Jin R. Enabling resilient microgrid through programmable network. IEEE Trans Smart Grid 2017;8 (6):2826–36.
[24]
Moslemi R, Mesbahi A, Velni JM. A fast, decentralized covariance selectionbased approach to detect cyber attacks in smart grids. IEEE Trans Smart Grid 2018;9(5):4930–41.
[25]
Wan W, Bragin MA, Yan B, Qin Y, Philhower J, Zhang P, et al. Distributed and asynchronous active fault management for networked microgrids. IEEE Trans Power Syst 2020;35(5):3857–68.
[26]
Kreutz D, Ramos FMV, Esteves Verissimo P, Esteve Rothenberg C, Azodolmolky S, Uhlig S. Software-defined networking: a comprehensive survey. Proc IEEE 2015;103(1):14–76.
[27]
Akilli M, Yilmaz N. Study of weak periodic signals in the EEG signals and their relationship with postsynaptic potentials. IEEE Trans Neural Syst Rehabil Eng 2018;26(10):1918–25.
[28]
Vahedi H, Gharehpetian GB, Karrari M. Application of duffing oscillators for passive islanding detection of inverter-based distributed generation units. IEEE Trans Power Deliv 2012;27(4):1973–83.
[29]
Jalilvand A, Fotoohabadi H. The application of Duffing oscillator in weak signal detection. ECTI Trans Electr Engineer Electron Commun 2011;9 (1):1–6.
[30]
Fujita T. Introduction to Ryu SDN framework [Internet]. Tokyo: Ryu SDN Framework Community; 2013 Apr 15 [cited 2020 Jul 20]; Available from: https://ryu-sdn.org/slides/ONS2013-april-ryu-intro.pdf.
[31]
Wang MH, Chi PW, Guo JW, Lei CL. SDN storage: a stream-based storage system over software-defined networks, In: Proceedings of 2016 IEEE Conference on Computer Communications Workshops; 2016 Apr 10–14; San Francisco, CA, USA; New York: IEEE; 2016. p. 598–9.
[32]
Chithaluru P, Prakash R. Simulation on SDN and NFV models through mininet. In: Damka A, editor. Innovations in software-defined networking and network functions virtualization. Hershey: IGI Global; 2018. p. 149–74.
PDF(4725 KB)

Accesses

Citation

Detail

段落导航
相关文章

/