基于深度学习技术的集群电动汽车及家庭热水系统灵活性预测

Junjie Hu, Huayanran Zhou, Yihong Zhou, Haijing Zhang, Lars Nordströmd, Guangya Yang

工程(英文) ›› 2021, Vol. 7 ›› Issue (8) : 1101-1114.

PDF(2676 KB)
PDF(2676 KB)
工程(英文) ›› 2021, Vol. 7 ›› Issue (8) : 1101-1114. DOI: 10.1016/j.eng.2021.06.008
研究论文
Article

基于深度学习技术的集群电动汽车及家庭热水系统灵活性预测

作者信息 +

Flexibility Prediction of Aggregated Electric Vehicles and Domestic Hot Water Systems in Smart Grids

Author information +
History +

摘要

随着电网中间歇性可再生能源发电规模的增大,为了保证电能质量和频率的稳定性,电网对可控资源的需求也随之增加。需求响应(demand response, DR)资源的灵活性已成为解决这一问题的一个有价值的方法。然而,目前关于DR资源的灵活性预测问题尚未得到充分的研究。本研究应用一种深度学习技术,即结合时间卷积神经网络的Transformer模型(temporal convolution network-combined transformer)来预测电动汽车与家庭热水系统两种DR资源的聚合灵活性。所提出的灵活性预测方法使用了基于DR资源的历史用电数据以及为了辅助预测所提出的DR信号数据。所提方法不仅可以预测聚合灵活性的大小,还可以预测其维持时间。最后,本文通过算例仿真验证了灵活性预测结果的准确性。仿真结果表明,在不同的灵活性维持时间下,DR资源灵活性的大小会发生变化。文中所提出的DR资源灵活性预测方法展现了其在释放需求侧资源的灵活性以向电网提供备用容量方面的应用。

Abstract

With the growth of intermittent renewable energy generation in power grids, there is an increasing demand for controllable resources to be deployed to guarantee power quality and frequency stability. The flexibility of demand response (DR) resources has become a valuable solution to this problem. However, existing research indicates that problems on flexibility prediction of DR resources have not been investigated. This study applied the temporal convolution network (TCN)-combined transformer, a deep learning technique to predict the aggregated flexibility of two types of DR resources, that is, electric vehicles (EVs) and domestic hot water system (DHWS). The prediction uses historical power consumption data of these DR resources and DR signals (DS) to facilitate prediction. The prediction can generate the size and maintenance time of the aggregated flexibility. The accuracy of the flexibility prediction results was verified through simulations of case studies. The simulation results show that under different maintenance times, the size of the flexibility changed. The proposed DR resource flexibility prediction method demonstrates its application in unlocking the demand-side flexibility to provide a reserve to grids.

关键词

负荷灵活性 / 电动汽车 / 家庭热水系统 / 结合时间卷积神经网络的Transformer模型 / 深度学习

Keywords

Load flexibility / Electric vehicles / Domestic hot water system / Temporal convolution network-combined transformer / Deep learning

引用本文

导出引用
Junjie Hu, Huayanran Zhou, Yihong Zhou. 基于深度学习技术的集群电动汽车及家庭热水系统灵活性预测. Engineering. 2021, 7(8): 1101-1114 https://doi.org/10.1016/j.eng.2021.06.008

参考文献

[1]
Hu J, Zhou H, Li Y, Hou P, Yang G. Multi-time scale energy management strategy of aggregator characterized by photovoltaic generation and electric vehicles. J Mod Power Syst Clean Energy 2020;8(4):727–36.
[2]
Kumar A, Sekhar C. Demand response based congestion management in a mix of pool and bilateral electricity market model. Front Energy 2012;6(2):164–78.
[3]
Hu J, Yang G, Ziras C, Kok K. Aggregator operation in the balancing market through network-constrained transactive energy. IEEE Trans Power Syst 2019;34(5):4071–80.
[4]
Xue Y, Yu X. Beyond smart grid—cyber–physical–social system in energy future. Proc IEEE 2017;105(12):2290–2.
[5]
International energy agency. Harnessing variable renewables: a guide to the balancing challenge. Paris: OECD Publishing; 2011.
[6]
Chen Z, Sun Y, Ai X, Malik SM, Yang L. Integrated demand response characteristics of industrial park: a review. J Mod Power Syst Clean Energy 2020;8(1):15–26.
[7]
Fattahi J, Samadi M, Erol-Kantarci M, Schriemer H. Transactive demand response operation at the grid edge using the IEEE 2030.5 standard. Engineering 2020;6(7):801–11.
[8]
Li Z, Guo Q, Sun H, Wang J. Storage-like devices in load leveling: complementarity constraints and a new and exact relaxation method. Appl Energy 2015;151:13–22.
[9]
Sanandaji BM, Vincent TL, Poolla K. Ramping rate flexibility of residential HVAC loads. IEEE Trans Sustain Energy 2016;7(2):865–74.
[10]
Hu K, Li W, Wang L, Cao S, Zhu F, Shou Z. Energy management for multimicrogrid system based on model predictive control. Front Inf Technol Electron Eng 2018;19(11):1340–51.
[11]
Vivekananthan C, Mishra Y, Ledwich G, Li F. Demand response for residential appliances via customer reward scheme. IEEE Trans Smart Grid 2014;5 (2):809–20.
[12]
Wu J, Xue Y, Xie D, Yue D, Wen F, Zhao J. Evaluation and simulation analysis of reserve capability for electric vehicles. Autom Electr Power Syst 2018;42 (13):101–7. Chinese.
[13]
Wang J, Jia Y, Mi Z, Chen H, Fang H. Reserve service strategy of electric vehicles based on double-incentive mechanism. Autom Electr Power Syst 2020;44 (10):68–76. Chinese.
[14]
Yao W, Zhao J, Wen F, Xue Y, Chen F, Li L. Frequency regulation strategy for electric vehicles with centralized charging. Autom Electr Power Syst 2014;38 (9):69–76. Chinese.
[15]
Zhang B, Xu G. Rolling horizon optimization for grid-connected electric vehicles considering demand difference. Autom Electr Power Syst 2020;44 (13):106–14. Chinese.
[16]
Han B, Lu S, Xue F, Jiang L. Day-ahead electric vehicle aggregator bidding strategy using stochastic programming in an uncertain reserve market. IET Gener Transm Distrib 2019;13(12):2517–25.
[17]
Wang Yi, Hug G, Liu Z, Zhang N. Modeling load forecast uncertainty using generative adversarial networks. Electr Power Syst Res 2020;189:106732.
[18]
Chen K, Chen K, Wang Q, He Z, Hu J, He J. Short-term load forecasting with deep residual network. IEEE Trans Smart Grid 2019;10(4):3943–52.
[19]
Hong T, Pinson P, Wang Yi, Weron R, Yang D, Zareipour H. Energy forecasting: a review and outlook. IEEE Open Access J Power and Energy 2020;7:376–88.
[20]
Divshali PH, Evens C. Behaviour analysis of electrical vehicle flexibility based on large-scale charging data. In: 2019 IEEE Milan PowerTech; 2019 Jun 23–27; Milan, Italy; 2019.
[21]
Sajjad IA, Chicco G, Napoli R. Definitions of demand flexibility for aggregate residential loads. IEEE Trans Smart Grid 2016;7(6):2633–43.
[22]
Paridari K, Nordström L. Flexibility prediction, scheduling and control of aggregated TCLs. Electr Power Syst Res 2020;178:106004.
[23]
Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J. Gradient flow in recurrent nets: the diffificulty of learning long-term dependencies. In: John FK, Stefan CK, editors. A field guide to dynamical recurrent networks. New York: IEEE Press; 2001. p. 237–44.
[24]
Bengio Y, Simard P, Frasconi P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans Neural Netw 1994;5(2):157–66.
[25]
Lu Z, Li H, Qiao Y. Power system flexibility planning and challenges considering high proportion of renewable energy. Autom Electr Power Syst 2016;40 (13):147–57. Chinese.
[26]
Parlos AG, Rais OT, Atiya AF. Multi-step-ahead prediction using dynamic recurrent neural networks. Neural Netw 2000;13(7):765–86.
[27]
Bao Y, Xiong T, Hu Z. Multi-step-ahead time series prediction using multipleoutput support vector regression. Neurocomputing 2014;129:482–93.
[28]
Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. 2014. arXiv:1409.3215v3.
[29]
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. 2017. arXiv:1706.03762v5.
[30]
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput 1997;9 (8):1735–80.
[31]
Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. 2014. arXiv:1412.3555v1.
[32]
Bai S, Kolter JZ, Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. 2018. arXiv:1803.01271.
[33]
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; Las Vegas, NV, USA; 2016.
[34]
Salimans T, Kingma DP. Weight normalization: a simple reparameterization to accelerate training of deep neural networks. 2016. arXiv:1602.07868.
[35]
Kingma DP, Ba JL. Adam: a method for stochastic optimization. 2017. arXiv:1412.6980v9.
[36]
Luo Z, Hu Z, Song Y, Xu Z, Lu H. Optimal coordination of plug-in electric vehicles in power grids with cost-benefit analysis—part II: a case study in china. IEEE Trans Power Syst 2013;28(4):3556–65.
[37]
Sandels C, Widén J, Nordström L. Forecasting household consumer electricity load profiles with a combined physical and behavioral approach. Appl Energy 2014;131:267–78.
PDF(2676 KB)

Accesses

Citation

Detail

段落导航
相关文章

/