
糖基工程毕赤酵母制备的SARS-CoV-2 S蛋白RBD受体结合区亚单位疫苗可激发中和抗体反应
Bo Liu, Ying Yin, Yuxiao Liu, Tiantian Wang, Peng Sun, Yangqin Ou, Xin Gong, Xuchen Hou, Jun Zhang, Hongguang Ren, Shiqiang Luo, Qian Ke, Yongming Yao, Junjie Xu, Jun Wu
工程(英文) ›› 2022, Vol. 13 ›› Issue (6) : 107-115.
糖基工程毕赤酵母制备的SARS-CoV-2 S蛋白RBD受体结合区亚单位疫苗可激发中和抗体反应
A Vaccine Based on the Receptor-Binding Domain of the Spike Protein Expressed in Glycoengineered Pichia pastoris Targeting SARS-CoV-2 Stimulates Neutralizing and Protective Antibody Responses
2020年至今,新型冠状病毒SARS-CoV-2已经在全球大流行。新冠疫苗被寄于厚望用以减轻防控压力,成为解决疫情危机的有效手段之一。SARS-CoV-2通过S蛋白受体结合区RBD与宿主细胞ACE2受体结合侵染机体。本文提供了一种利用新型糖基工程毕赤酵母表达系统,制备基于S蛋白RBD重组亚单位候选疫苗的方法。该糖基工程酵母的糖基化修饰途径经过人源化改造后,具有类似于哺乳动物细胞糖基化修饰特点。研究发现,RBD候选疫苗可以有效地诱导小鼠产生高滴度的抗RBD特异性抗体,含Al(OH)3和CpG双佐剂的RBD免疫组小鼠产生的特异性抗体滴度和病毒中和抗体滴度显著地高于Al(OH)3单佐剂组,且中和抗体可以在小鼠体内持续6个月以上。综上所述,本文利用糖基工程酵母制备了SARS-CoV-2 S蛋白RBD糖蛋白疫苗,该疫苗能够诱导小鼠产生高滴度中和抗体,同时提供了一种可制备具有无岩藻糖的复杂型N-糖基化修饰重组蛋白的方法。
In 2020 and 2021, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus, caused a global pandemic. Vaccines are expected to reduce the pressure of prevention and control, and have become the most effective strategy to solve the pandemic crisis. SARS-CoV-2 infects the host by binding to the cellular receptor angiotensin converting enzyme 2 (ACE2) via the receptor-binding domain (RBD) of the surface spike (S) glycoprotein. In this study, a candidate vaccine based on a RBD recombinant subunit was prepared by means of a novel glycoengineered yeast Pichia pastoris expression system with characteristics of glycosylation modification similar to those of mammalian cells. The candidate vaccine effectively stimulated mice to produce high-titer anti-RBD specific antibody. Furthermore, the specific antibody titer and virus-neutralizing antibody (NAb) titer induced by the vaccine were increased significantly by the combination of the double adjuvants Al(OH)3 and CpG. Our results showed that the virus-NAb lasted for more than six months in mice. To summarize, we have obtained a SARS-CoV-2 vaccine based on the RBD of the S glycoprotein expressed in glycoengineered Pichia pastoris, which stimulates neutralizing and protective antibody responses. A technical route for fucose-free complex-type N-glycosylation modified recombinant subunit vaccine preparation has been established.
冠状病毒 / SARS-CoV-2 / 疫苗 / 酵母 / 受体结合区(RBD)
Coronavirus / SARS-CoV-2 / Vaccine / Yeast / Receptor-binding domain (RBD)
[1] |
www.who.int [Internet]. Geneva: World Health Organization; 2020 [cited 2021 Jan 25]. Available from: https://covid19.who.int/region/euro/country/tj.
|
[2] |
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020;581 (7807):215–20.
|
[3] |
Barnes CO, Jette CA, Abernathy ME, Dam KM, Esswein SR, Gristick HB, et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020;588(7839):682–7.
|
[4] |
Dai L, Zheng T, Xu K, Han Y, Xu L, Huang E, et al. A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell 2020;182 (3):722–33.e11.
|
[5] |
Yang J, Wang W, Chen Z, Lu S, Yang F, Bi Z, et al. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature 2020;586 (7830):572–7.
|
[6] |
Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M. Site-specific glycan analysis of the SARS-CoV-2 spike. Science 2020;369(6501):330–3.
|
[7] |
Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 2000;24(1):45–66.
|
[8] |
Dean N. Asparagine-linked glycosylation in the yeast Golgi. Biochim Biophys Acta 1999;1426(2):309–22.
|
[9] |
Wildt S, Gerngross TU. The humanization of N-glycosylation pathways in yeast. Nat Rev Microbiol 2005;3(2):119–28.
|
[10] |
Hamilton SR, Gerngross TU. Glycosylation engineering in yeast: the advent of fully humanized yeast. Curr Opin Biotechnol 2007;18(5):387–92.
|
[11] |
Liu Bo, Shi P, Wang T, Zhao Y, Lu S, Li X, et al. Recombinant H7 hemagglutinin expressed in glycoengineered Pichia pastoris forms nanoparticles that protect mice from challenge with H7N9 influenza virus. Vaccine 2020;38 (50):7938–48.
|
[12] |
Thomson E, Rosen L, Shepherd J, Spreafico R, Filipe A, Wojcechowskyj J, et al. The circulating SARS-CoV-2 spike variant N439K maintains fitness while evading antibody-mediated immunity. Cell 2021;184(5):1171–87.
|
[13] |
HogenEsch H, O’Hagan DT, Fox CB. Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. NPJ Vaccines 2018;3 (1):51.
|
[14] |
Shivahare R, Vishwakarma P, Parmar N, Yadav PK, Haq W, Srivastava M, et al. Combination of liposomal CpG oligodeoxynucleotide 2006 and miltefosine induces strong cell-mediated immunity during experimental visceral leishmaniasis. PLoS ONE 2014;9(4):e94596.
|
[15] |
Pulendran B, S. Arunachalam P, O’Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov 2021;20(6):454–75.
|
[16] |
Choi B-K, Bobrowicz P, Davidson RC, Hamilton SR, Kung DH, Li H, et al. Use of combinatorial genetic libraries to humanize N-linked glycosylation in the yeast Pichia pastoris. Proc Natl Acad Sci USA 2003;100(9):5022–7.
|
[17] |
Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, et al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 2006;24 (2):210–5.
|
[18] |
Callewaert N, Laroy W, Cadirgi H, Geysens S, Saelens X, Min Jou W, et al. Use of HDEL-tagged Trichoderma reesei mannosyl oligosaccharide 1,2-a-Dmannosidase for N-glycan engineering in Pichia pastoris. FEBS Lett 2001;503 (2–3):173–8.
|
[19] |
Gstöttner C, Zhang T, Resemann A, Ruben S, Pengelley S, Suckau D, et al. Structural and functional characterization of SARS-CoV-2 RBD domains produced in mammalian cells. Anal Chem 2021;93(17):6839–47.
|
[20] |
Cooper CL, Davis HL, Morris ML, Efler SM, Adhami MAL, Krieg AM, et al. CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: a double-blind phase I/II study. J Clin Immunol 2004;24(6):693–701.
|
[21] |
Zhou D, Tian X, Qi R, Peng C, Zhang W. Identification of 22 N-glycosites on spike glycoprotein of SARS-CoV-2 and accessible surface glycopeptide motifs: implications for vaccination and antibody therapeutics. Glycobiology 2021;31 (1):69–80.
|
[22] |
Yang YL, Chang SH, Gong X, Wu J, Liu B. Expression, purification and characterization of low-glycosylation influenza neuraminidase in a-1,6- mannosyltransferase defective Pichia pastoris. Mol Biol Rep 2012;39 (2):857–64.
|
/
〈 |
|
〉 |