
木质素磺酸盐/二氧化硅无机颗粒体系中的原子力显微镜力学测试——从分散机理研究到产品设计
Jingyu Wang, Yong Qian, Yijie Zhou, Dongjie Yang, Xueqing Qiu
工程(英文) ›› 2021, Vol. 7 ›› Issue (8) : 1140-1148.
木质素磺酸盐/二氧化硅无机颗粒体系中的原子力显微镜力学测试——从分散机理研究到产品设计
Atomic Force Microscopy Measurement in the Lignosulfonate/Inorganic Silica System: From Dispersion Mechanism Study to Product Design
设计和制备高性能木质素基分散剂是实现木质素工程化高值利用的关键。这一过程很大程度上取决于对木质素基分散剂分散机理的理解。本文通过原子力显微镜(AFM)量化研究了木质素磺酸盐/二氧化硅(LS/SiO2)体系在不同pH条件下的分散机理。结果表明,SiO2颗粒之间在LS溶液中比在水中有更强的排斥力,因此具有更好的分散稳定性。分别使用Derjaguin-Landau-Verwey-Overbeek (DLVO)理论以及结合空间位阻排斥力的DLVO理论方程对水中和LS溶液中的SiO2探针与基材之间的AFM力/距离曲线(F/D)进行拟合。基于拟合结果,分别计算出静电排斥力和空间位阻排斥力,证明LS在SiO2粒子之间提供了较强的空间位阻排斥力。进一步研究证明,LS在SiO2上的吸附量(Q)、归一化作用常数(A)和特征长度(L)是影响LS/SiO2体系空间位阻排斥力的三个关键因素。基于上述研究,设计并制备了新型季铵化接枝磺化木质素基分散剂(QAGSL)。QAGSL对SiO2和真实水泥颗粒均具有良好的分散性能。相关研究既为LS/无机颗粒体系中的分散机理提供了基础和定量的理解,也为高性能木质素基分散剂的开发提供了重要的技术指导。
Designing and preparing high-performance lignin-based dispersants are crucial steps in realizing the value-added utilization of lignin on an industrial scale. Such process depends heavily on an understanding of the dispersion mechanism of lignin-based dispersants. Here, atomic force microscopy (AFM) is employed to quantitatively investigate the dispersion mechanism of a lignosulfonate/silica (LS/SiO2) system under different pH conditions. The results show that the repulsive force between SiO2 particles in LS solution is stronger than it is in water, resulting in better dispersion stability. The Derjaguin–Landau–Verwey–Overbeek (DLVO) formula as well as the DLVO formula combined with steric repulsion is utilized for the fitting of the AFM force/distance (F/D) curves between the SiO2 probe and substrate in water and in LS solution. Based on these fitting results, electrostatic and steric repulsive forces are respectively calculated, yielding further evidence that LS provides strong steric repulsion between SiO2 particles. Further studies indicate that the adsorbance of LS on SiO2 (Q), the normalized interaction constant (A), and the characteristic length (L) are the three critical factors affecting steric repulsion in the LS/SiO2 system. Based on the above conclusions, a novel quaternized grafted-sulfonation lignin (QAGSL) dispersant is designed and prepared. The QAGSL dispersant exhibits good dispersing performance for SiO2 and real cement particles. This work provides a fundamental and quantitative understanding of the dispersion mechanism in the LS/inorganic particle system and provides important guidance for the development of high-performance lignin-based dispersants.
木质素 / 二氧化硅 / 原子力显微镜 / 分散机理 / 产品设计
Lignin / Silica / Atomic force microscopy / Dispersion mechanism / Product design
[1] |
Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM. The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 2010;110(6):3552–99.
|
[2] |
Bernier E, Lavigne C, Robidoux PY. Life cycle assessment of kraft lignin for polymer applications. Int J Life Cycle Assess 2013;18(2):520–8.
|
[3] |
Zhang J, Chen Y, Sewell P, Brook MA. Utilization of softwood lignin as both crosslinker and reinforcing agent in silicone elastomers. Green Chem 2015;17 (3):1811–9. Correction in: Green Chem 2015,17(5):3176.
|
[4] |
Li Y, Zhu H, Yang C, Zhang Y, Xu J, Lu M. Synthesis and super retarding performance in cement production of diethanolamine modified lignin surfactant. Constr Build Mater 2014;52:116–21.
|
[5] |
Qiu X, Zeng W, Yu W, Xue Y, Pang Y, Li X, et al. Alkyl chain cross-linked sulfobutylated lignosulfonate: a highly efficient dispersant for carbendazim suspension concentrate. ACS Sustain Chem Eng 2015;3(7):1551–7.
|
[6] |
Xiong W, Yang D, Zhong R, Li Y, Zhou H, Qiu X. Preparation of lignin-based silica composite submicron particles from alkali lignin and sodium silicate in aqueous solution using a direct precipitation method. Ind Crops Prod 2015;74:285–92.
|
[7] |
Yu G, Li B, Wang H, Liu C, Mu X. Preparation of concrete superplasticizer by oxidation–sulfomethylation of sodium lignosulfonate. BioResources 2013;8 (1):1055–63.
|
[8] |
Houst YF, Bowen P, Perche F, Kauppi A, Borget P, Galmiche L, et al. Design and function of novel superplasticizers for more durable high performance concrete (superplast project). Cement Concr Res 2008;38(10):1197–209.
|
[9] |
Björnström J, Chandra S. Effect of superplasticizers on the rheological properties of cements. Mater Struct 2003;36(10):685–92.
|
[10] |
Plank J, Sakai E, Miao CW, Yu C, Hong JX. Chemical admixtures—chemistry, applications and their impact on concrete microstructure and durability. Cement Concr Res 2015;78:81–99.
|
[11] |
Klapiszewski Ł, Nowacka M, Siwin´ ska-Stefan´ ska K, Jesionowski T. Lignosulfonate and silica as precursors of advanced composites. Pol J Chem Technol 2013;15(3):103–9.
|
[12] |
Milczarek G, Motylenko M, Modrzejewska-Sikorska A, Klapiszewski Ł, Wysokowski M, Bazhenov VV, et al. Deposition of silver nanoparticles on organically-modified silica in the presence of lignosulfonate. RSC Adv 2014;4 (94):52476–84.
|
[13] |
Klapiszewski Ł, Zdarta J, Szatkowski T, Wysokowski M, Nowacka M, SzwarcRzepka K, et al. Silica/lignosulfonate hybrid materials: preparation and characterization. Open Chem 2014;12(6):719–35.
|
[14] |
Konował E, Modrzejewska-Sikorska A, Motylenko M, Klapiszewski Ł, Wysokowski M, Bazhenov VV, et al. Functionalization of organically modified silica with gold nanoparticles in the presence of lignosulfonate. Int J Biol Macromol 2016;85:74–81.
|
[15] |
Modrzejewska-Sikorska A, Konował E, Klapiszewski Ł, Nowaczyk G, Jurga S, Jesionowski T, et al. Lignosulfonate-stabilized selenium nanoparticles and their deposition on spherical silica. Int J Biol Macromol 2017;103:403–8.
|
[16] |
Li R, Yang DJ, Guo WY, Qiu XQ. The adsorption and dispersing mechanisms of sodium lignosulfonate on Al2O3 particles in aqueous solution. Holzforschung 2013;67(4):387–94.
|
[17] |
Megiatto JD, Cerrutti BM, Frollini E. Sodium lignosulfonate as a renewable stabilizing agent for aqueous alumina suspensions. Int J Biol Macromol 2016;82:927–32.
|
[18] |
Colombo A, Geiker MR, Justnes H, Lauten RA, De Weerdt K. On the effect of calcium lignosulfonate on the rheology and setting time of cement paste. Cement Concr Res 2017;100:435–44.
|
[19] |
Wang CC, Sivashanmugan K, Chen CK, Hong JR, Sung WI, Liao JD, et al. Specific unbinding forces between mutated human P-selectin glycoprotein ligand-1 and viral protein-1 measured using force spectroscopy. J Phys Chem Lett 2017;8(21):5290–5.
|
[20] |
Shi C, Chan DYC, Liu Q, Zeng H. Probing the hydrophobic interaction between air bubbles and partially hydrophobic surfaces using atomic force microscopy. J Phys Chem C 2014;118(43):25000–8.
|
[21] |
Hutter JL, Bechhoefer J. Calibration of atomic-force microscope tips. Rev Sci Instrum 1993;64(7):1868–73.
|
[22] |
Geng Y, Yan Y, Wang J, Brousseau E, Sun Y, Sun Y. Fabrication of periodic nanostructures using AFM tip-based nanomachining: combining groove and material pile-up topographies. Engineering 2018;4(6):787–95.
|
[23] |
Dufrêne YF, Martínez-Martín D, Medalsy I, Alsteens D, Müller DJ. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat Methods 2013;10(9):847–54.
|
[24] |
Li X, Feng Y, Chu G, Ning N, Tian M, Zhang L. Directly and quantitatively studying the interfacial interaction between SiO2 and elastomer by using peak force AFM. Compos Commun 2018;7:36–41.
|
[25] |
Ding YH, Zhang P, Ren HM, Zhuo Q, Yang ZM, Jiang X, et al. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy. Appl Surf Sci 2011;258(3):1077–81.
|
[26] |
Yoo HY, Huang J, Li L, Foo M, Zeng H, Hwang DS. Nanomechanical contribution of collagen and von Willebrand factor A in marine underwater adhesion and its implication for collagen manipulation. Biomacromolecules 2016;17 (3):946–53.
|
[27] |
Binazadeh M, Faghihnejad A, Unsworth LD, Zeng H. Understanding the effect of secondary structure on molecular interactions of poly-L-lysine with different substrates by SFA. Biomacromolecules 2013;14(10):3498–508.
|
[28] |
Zeng H, Hwang DS, Israelachvili JN, Waite JH. Strong reversible Fe3+-mediated bridging between dopa-containing protein films in water. Proc Natl Acad Sci USA 2010;107(29):12850–3.
|
[29] |
Yang B, Ayyadurai N, Yun H, Choi YS, Hwang BH, Huang J, et al. In vivo residuespecific dopa-incorporated engineered mussel bioglue with enhanced adhesion and water resistance. Angew Chem Int Ed Engl 2014;126 (49):13578–82.
|
[30] |
Qin C, Clarke K, Li K. Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnol Biofuels 2014;7(1):65.
|
[31] |
Cai C, Pang Y, Zhan X, Zeng M, Lou H, Qian Y, et al. Using temperatureresponsive zwitterionic surfactant to enhance the enzymatic hydrolysis of lignocelluloses and recover cellulase by cooling. Bioresour Technol 2017;243:1141–8.
|
[32] |
Israelachvili JN. Intermolecular and surface forces. 3rd ed. California: Academic Press; 2011.
|
[33] |
Lou H, Lai H, Wang M, Pang Y, Yang D, Qiu X, et al. Preparation of lignin-based superplasticizer by graft sulfonation and investigation of the dispersive performance and mechanism in a cementitious system. Ind Eng Chem Res 2013;52(46):16101–9.
|
[34] |
Kuhl TL, Leckband DE, Lasic DD, Israelachvili JN. Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups. Biophys J 1994;66(5):1479–88.
|
[35] |
Uchikawa H, Hanehara S, Sawaki D. The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture. Cement Concr Res 1997;27(1):37–50.
|
[36] |
Yoshioka K, Sakai E, Daimon M, Kitahara A. Role of steric hindrance in the performance of superplasticizers for concrete. J Am Ceram Soc 1997;80 (10):2667–71.
|
[37] |
Anderson JH, Parks GA. Electrical conductivity of silica gel in the presence of adsorbed water. J Phys Chem 1968;72(10):3662–8.
|
[38] |
Wu SH, Mou CY, Lin HP. Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 2013;42(9):3862–75.
|
[39] |
Qiu X, Kong Q, Zhou M, Yang D. Aggregation behavior of sodium lignosulfonate in water solution. J Phys Chem B 2010;114(48):15857–61.
|
/
〈 |
|
〉 |