
数值凸透镜——实现兆瓦级电力电子系统广义混杂动力学行为的状态离散建模解算
Bochen Shi, Zhengming Zhao, Yicheng Zhu, Zhujun Yu, Jiahe Ju
工程(英文) ›› 2021, Vol. 7 ›› Issue (12) : 1766-1777.
数值凸透镜——实现兆瓦级电力电子系统广义混杂动力学行为的状态离散建模解算
A Numerical Convex Lens for the State-Discretized Modeling and Simulation of Megawatt Power Electronics Systems as Generalized Hybrid Systems
建模仿真已经成为构建虚拟数值实验平台和分析研究复杂工程系统必不可少的基础方法。然而,随着工程领域面对的系统越来越复杂,建模仿真方法也面临越来越大的挑战。这些复杂系统内部的动力学过程不仅包括连续状态,还包括离散事件,而且其动态过程跨越多个时间尺度。本文将这类复杂系统定义为“广义混杂系统”。兆瓦级电力电子系统是一类典型的广义混杂系统,已经被广泛应用于现代电网等多个关键领域,然而其建模解算仍然是一个瓶颈问题:要么计算时间太长,要么仿真不能收敛。为解决这一瓶颈问题,本文提出一种数值凸透镜方法,实现了广义混杂系统基于状态离散的建模解算。这一方法将传统的面向纯连续系统的时间离散仿真方法转变为面向广义混杂系统的状态离散仿真方法。本文将这一方法应用于一个面向新能源发电的大规模兆瓦级电力电子变换系统,与目前的通用仿真软件相比解算速度提高了1000倍。与此同时,所提方法首次实现了这一兆瓦级系统的开关瞬态仿真,仿真结果与实验测试结果相吻合,且仿真没有收敛性问题。本文提出的数值凸透镜方法实现了复杂的广义混杂系统多时间尺度动力学行为的高效建模解算,提升了工程领域基于虚拟数值实验认知和分析复杂动力学系统的能力。
Modeling and simulation have emerged as an indispensable approach to create numerical experiment platforms and study engineering systems. However, the increasingly complicated systems that engineers face today dramatically challenge state-of-the-art modeling and simulation approaches. Such complicated systems, which are composed of not only continuous states but also discrete events, and which contain complex dynamics across multiple timescales, are defined as generalized hybrid systems (GHSs) in this paper. As a representative GHS, megawatt power electronics (MPE) systems have been largely integrated into the modern power grid, but MPE simulation remains a bottleneck due to its unacceptable time cost and poor convergence. To address this challenge, this paper proposes the numerical convex lens approach to achieve state-discretized modeling and simulation of GHSs. This approach transforms conventional time-discretized passive simulations designed for pure-continuous systems into state-discretized selective simulations designed for GHSs. When this approach was applied to a largescale MPE-based renewable energy system, a 1000-fold increase in simulation speed was achieved, in comparison with existing software. Furthermore, the proposed approach uniquely enables the switching transient simulation of a largescale megawatt system with high accuracy, compared with experimental results, and with no convergence concerns. The numerical convex lens approach leads to the highly efficient simulation of intricate GHSs across multiple timescales, and thus significantly extends engineers' capability to study systems with numerical experiments.
广义混杂系统 / 兆瓦级电力电子 / 建模仿真 / 数值凸透镜
Generalized hybrid systems / Megawatt power electronics / Modeling and simulation / Numerical convex lens
[1] |
Song Y, Wei M, Xu F, Wang Y. Molecular simulations of water transport resistance in polyamide RO membranes: interfacial and interior contributions. Engineering 2020;6(5):577–84.
|
[2] |
Hu H, Zhong Z. Explicit–implicit co-simulation techniques for dynamic responses of a passenger car on arbitrary road surfaces. Engineering 2019;5 (6):1171–8.
|
[3] |
Yuan Y, Tang X, Zhou W, Pan W, Li X, Zhang H, et al. Data driven discovery of cyber physical systems. Nat Commun 2019;10(1):4894.
|
[4] |
Decarlo RA, Branicky MS, Pettersson S, Lennartson B. Perspectives and results on the stability and stabilizability of hybrid systems. Proc IEEE 2000;88 (7):1069–82.
|
[5] |
Soroye P, Newbold T, Kerr J. Climate change contributes to widespread declines among bumble bees across continents. Science 2020;367(6478):685–8.
|
[6] |
Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 2017;355(6332):eaai9214.
|
[7] |
Kraemer MUG, Yang CH, Gutierrez B, Wu CH, Klein B, Pigott DM, et al. The effect of human mobility and control measures on the COVID-19 epidemic in China. Science 2020;368(6490):493–7.
|
[8] |
Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020;368(6493):860–8.
|
[9] |
Engell S, Kowalewski S, Schulz C, Stursberg O. Continuous-discrete interactions in chemical processing plants. Proc IEEE 2000;88(7):1050–68.
|
[10] |
Brandao M, Hashimoto K, Santos-Victor J, Takanishi A. Footstep planning for slippery and slanted terrain using human-inspired models. IEEE Trans Robot 2016;32(4):868–79.
|
[11] |
Tan D. Emerging system applications and technological trends in power electronics: power electronics is increasingly cutting across traditional boundaries. IEEE Power Electron Mag 2015;2(2):38–47.
|
[12] |
Nie J, Yuan L, Wen W, Duan R, Shi B, Zhao Z. Communication-independent power balance control for solid state transformer interfaced multiple power conversion systems. IEEE Trans Power Electron 2020;35(4):4256–71.
|
[13] |
Zhao Z, Yuan L, Bai H, Lu T, editors. Electromagnetic transients of power electronics systems. Singapore: Springer Singapore; 2019.
|
[14] |
Levis A. Challenges to control: a collective view–report of the workshop held at the University of Santa Clara on September 18–19, 1986. IEEE Trans Automat Control 1987;32(4):275–85.
|
[15] |
Antsaklis PJ. Special issue on hybrid systems: theory and applications a brief introduction to the theory and applications of hybrid systems. Proc IEEE 2000;88(7):879–87.
|
[16] |
Balluchi A, Benvenuti L, di Benedetto MD, Pinello C, Sangiovanni-Vincentelli AL. Automotive engine control and hybrid systems: challenges and opportunities. Proc IEEE 2000;88(7):888–912.
|
[17] |
Derler P, Lee EA, Sangiovanni-Vincentelli A. Modeling cyber–physical systems. Proc IEEE 2012;100(1):13–28.
|
[18] |
Neal CA, Brantley SR, Antolik L, Babb JL, Burgess M, Calles K, et al. The 2018 rift eruption and summit collapse of Kılauea Volcano. Science 2019;363 (6425):367–74.
|
[19] |
Zhao Z, Tan D, Li K. Transient behaviors of multiscale megawatt power electronics systems—Part I: characteristics and analysis. IEEE J Emerg Sel Top Power Electron 2019;7(1):7–17.
|
[20] |
Shi B, Zhao Z, Zhu Y. Piecewise analytical transient model for power switching device commutation unit. IEEE Trans Power Electron 2019;34(6):5720–36.
|
[21] |
Zhao Z, Tan D, Li K, Yuan L. Transient behaviors of multiscale megawatt power electronics systems—Part II: design techniques and practical applications. IEEE J Emerg Sel Top Power Electron 2019;7(1):18–29.
|
[22] |
Hairer E, Nørsett SP, Wanner G. Solving ordinary differential equations. 2nd ed. Heidelberg: Springer; 2009.
|
[23] |
Middlebrook RD. Small-signal modeling of pulse-width modulated switchedmode power converters. Proc IEEE 1988;76(4):343–54.
|
[24] |
Wester GW, Ieee Middlebrook MR, Member S. Low-frequency characterization of switched dc–dc converters. In: the Third IEEE Power Processing and Electronic Specialists Conference; 1972 May 22–23; Atlantic City, NJ, USA. New York: IEEE; 1973.
|
[25] |
Sreekumar C, Agarwal V. A hybrid control algorithm for voltage regulation in DC–DC boost converter. IEEE Trans Ind Electron 2008;55(6):2530–8.
|
[26] |
Alimeling JH, Hammer WP. PLECS-piece-wise linear electrical circuit simulation for Simulink. In: Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems; 1999 Jul 27–29; Hong Kong, China. New York: IEEE; 2019. p. 355–60.
|
[27] |
Massarini A, Reggiani U, Kazimierczuk MK. Analysis of networks with ideal switches by state equations. IEEE Trans Circ Syst I Fundam Theory Appl 1997;44(8):692–7.
|
[28] |
Hefner AR. Analytical modeling of device-circuit interactions for the power insulated gate bipolar transistor (IGBT). IEEE Trans Ind Appl 1990;26 (6):995–1005.
|
[29] |
Zhao X, Li H, Wang Y, Zhou Z, Sun K, Zhao ZA, et al. A temperature-dependent PSpice short-circuit model of SiC MOSFET. In: 2019 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia); 2019 May 23– 25; Taipei, China. New York: IEEE; 2019. p. 1–5.
|
[30] |
Liu T, Ning R, Wong TTY, Shen ZJ. Equivalent circuit models and model validation of SiC MOSFET oscillation phenomenon. In: 2016 IEEE Energy Conversion Congress and Exposition (ECCE); 2016 Sep 18–22; Milwaukee, WI, USA. New York: IEEE; 2002. p. 1–8.
|
[31] |
Leigh JR. Control theory: a guided tour. 2nd ed. Stevenage: The Institution of Engineering and Technology; 2004.
|
[32] |
Li H, Zhao X, Sun K, Zhao Z, Cao G, Zheng TQ. A non-segmented pspice model of SiC mosfet with temperature-dependent parameters. IEEE Trans Power Electron 2019;34(5):4603–12.
|
[33] |
Perez MA, Bernet S, Rodriguez J, Kouro S, Lizana R. Circuit topologies, modeling, control schemes, and applications of modular multilevel converters. IEEE Trans Power Electron 2015;30(1):4–17.
|
[34] |
Li K, Wen W, Zhao Z, Yuan L, Cai W, Mo X, et al. Design and implementation of four-port megawatt-level high-frequency-bus based power electronic transformer. IEEE Trans Power Electron 2021;36(6):6429–42.
|
[35] |
Zhu Y, Zhao Z, Shi B, Ju J, Yu Z, Yuan L, et al. Discrete state event-driven framework for simulation of switching transients in power electronic systems. In: 2019 IEEE Energy Conversion Congress and Exposition (ECCE); 2019 Sep 29–Oct 3; Baltimore, MD, USA. New York: IEEE; 2019. p. 895–900.
|
[36] |
Gnanarathna UN, Gole AM, Jayasinghe RP. Efficient modeling of modular multilevel HVDC converters (MMC) on electromagnetic transient simulation programs. IEEE Trans Power Deliv 2011;26(1):316–24.
|
[37] |
Shampine LF, Gladwell I, Thompson S, editors. Solving ODEs with MATLAB. Cambridge: University Press; 2003.
|
[38] |
van der Schaft AJ, Schumacher JM. An introduction to hybrid dynamical systems. London: Springer; 2000.
|
[39] |
Zhu Y, Zhao Z, Shi B, Yu Z. Discrete state event-driven framework with a flexible adaptive algorithm for simulation of power electronic systems. IEEE Trans Power Electron 2019;34(12):11692–705.
|
[40] |
Shi B, Zhao ZM, Zhu Y, Yu Z, Ju J. Discrete state event-driven simulation approach with a state-variable-interfaced decoupling strategy for large-scale power electronics systems. IEEE Trans Ind Electron 2021;68(12):11673–83.
|
[41] |
Kojabadi HM. A comparative analysis of different pulse width modulation methods for low cost induction motor drives. Energy Convers Manage 2011;52 (1):136–46.
|
[42] |
Wei S, Zhao Z, Yuan L, Wen W, Chen K. Voltage oscillation suppression for the high-frequency bus in modular-multi-active-bridge converter. IEEE Trans Power Electron 2021;36(9):9737–42.
|
[43] |
Shi B, Zhao Z, Tan D, Zhu Y. Integral control of megawatt power electronic systems as generalized hybrid systems. IEEE J EM SEL TOP P. In press.
|
/
〈 |
|
〉 |