
人工智能机器人实验室前景广阔
AI-Driven Robotic Laboratories Show Promise
[1] |
Laino T. RoboRXN: automating chemical synthesis [Internet]. Zurich: IBM Research Blog; 2020 Aug 26 [cited 2021 Jun 29]. Available from: https://www.ibm.com/blogs/research/2020/08/roborxn-automating-chemicalsynthesis/.
|
[2] |
Vaucher AC, Zipoli F, Geluykens J, Nair VH, Schwaller P, Laino T. Automated extraction of chemical synthesis actions from experimental procedures. Nat Commun 2020;11:3601.
|
[3] |
Schwaller P, Hoover B, Reymond JL, Strobelt H, Laino T. Extraction of organic chemistry grammar from unsupervised learning of chemical reactions. Sci Adv 2021;7(15):eabe4166.
|
[4] |
Schwaller P, Probst D, Vaucher AC, Nair VH, Kreutter D, Laino T, et al. Mapping the space of chemical reactions using attention-based neural networks. Nat Mach Intell 2021;3:144–52.
|
[5] |
Burger B, Maffettone PM, Gusev VV, Aitchison CM, Bai Y, Wang X, et al. A mobile robotic chemist. Nature 2020;583:237–41.
|
[6] |
Aspuru-Guzik A, Persson K. Materials acceleration platform: accelerating advanced energy materials discovery by integrating high-throughput methods and artificial intelligence [Internet]. Cambridge: Mission Innovation; c2018 [cited 2021 Jun 29]. Available from: http://nrs.harvard.edu/urn-3:HUL. InstRepos:35164974.
|
[7] |
MacLeod BP, Parlane FGL, Morrissey TD, Häse F, Roch LM, Dettelbach KE, et al. Self-driving laboratory for accelerated discovery of thin-film materials. Sci Adv 2020;6(20):eaaz8867.
|
[8] |
Coley CW, Thomas DA, Lummiss JAM, Jaworski JN, Breen CP, Schultz V, et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 2019;365(6453):eaax1566.
|
/
〈 |
|
〉 |