基于边缘计算的软件定义云制造和柔性资源调度研究

Chen Yang, Fangyin Liao, Shulin Lan, Lihui Wang, Weiming Shen, George Q. Huang

工程(英文) ›› 2023, Vol. 22 ›› Issue (3) : 60-70.

PDF(2731 KB)
PDF(2731 KB)
工程(英文) ›› 2023, Vol. 22 ›› Issue (3) : 60-70. DOI: 10.1016/j.eng.2021.08.022
研究论文
Article

基于边缘计算的软件定义云制造和柔性资源调度研究

作者信息 +

Flexible Resource Scheduling for Software-Defined Cloud Manufacturing with Edge Computing

Author information +
History +

摘要

本文研究的重点是在云制造环境中实现快速重构、实现灵活的资源调度、开发资源潜力以应对各种变化。因此,本文首先提出了一种新的基于云和软件定义网络(SDN)的制造模型——软件定义云制造(SDCM),该模型将控制逻辑从自动化硬件转移到软件上。这种转变意义重大,因为软件可以充当制造系统的“大脑”,并且可以轻松更改或更新以支持快速系统重新配置、运营和演进。随后,边缘计算被引入,以接近终端的计算和存储能力来补充云。另一个关键问题是管理由不同服务质量(QoS)要求的大量物联网(IoT)数据传输而导致的严重网络拥塞。基于SDCM的虚拟化和灵活的网络能力,本研究形式化了面向复杂制造任务集的时间敏感性数据流量控制问题,并考虑了子任务分配和数据路由路径选择。为了解决这一优化问题,提出了一种将遗传算法(GA)、Dijkstra 最短路径算法和排队算法相结合的方法。实验结果表明,该方法能有效地防止网络拥塞,减少SDCM中的总通信延迟。

Abstract

This research focuses on the realization of rapid reconfiguration in a cloud manufacturing environment to enable flexible resource scheduling, fulfill the resource potential and respond to various changes. Therefore, this paper first proposes a new cloud and software-defined networking (SDN)-based manufacturing model named software-defined cloud manufacturing (SDCM), which transfers the control logic from automation hard resources to the software. This shift is of significance because the software can function as the “brain” of the manufacturing system and can be easily changed or updated to support fast system reconfiguration, operation, and evolution. Subsequently, edge computing is introduced to complement the cloud with computation and storage capabilities near the end things. Another key issue is to manage the critical network congestion caused by the transmission of a large amount of Internet of Things (IoT) data with different quality of service (QoS) values such as latency. Based on the virtualization and flexible networking ability of the SDCM, we formalize the time-sensitive data traffic control problem of a set of complex manufacturing tasks, considering subtask allocation and data routing path selection. To solve this optimization problem, an approach integrating the genetic algorithm (GA), Dijkstra's shortest path algorithm, and a queuing algorithm is proposed. Results of experiments show that the proposed method can efficiently prevent network congestion and reduce the total communication latency in the SDCM.

关键词

云制造 / 边缘计算 / 软件定义网络 / 工业物联网 / 工业4.0

Keywords

Cloud manufacturing / Edge computing / Software-defined networks / Industrial internet of things / Industry 4.0

引用本文

导出引用
Chen Yang, Fangyin Liao, Shulin Lan. 基于边缘计算的软件定义云制造和柔性资源调度研究. Engineering. 2023, 22(3): 60-70 https://doi.org/10.1016/j.eng.2021.08.022

参考文献

[1]
Yang C, Shen W, Wang X. The Internet of Things in manufacturing: key issues and potential applications. IEEE Syst Man Cybern Mag 2018;4(1):6–15.
[2]
Hao Y, Jiang Y, Chen T, Cao D, Chen M. iTaskOffloading: intelligent task offloading for a cloud–edge collaborative system. IEEE Netw 2019;33(5):82–8.
[3]
Yang C, Lan S, Shen W, Wang L, Huang GQ. Software-defined cloud manufacturing with edge computing for Industry 4.0. Proceedings of 16th International Wireless Communications and Mobile Computing; 2020 Jun 15– 19; Limassol, Cyprus. New York City: IEEE; 2020.
[4]
Bonomi F, Milito R, Zhu J, Addepalli S. Fog computing and its role in the Internet of Things. In: Proceedings of The First Edition of the MCC Workshop on Mobile Cloud Computing; 2012 Aug 17; Helsinki, Finland. New York City: ACM; 2012. p. 13–6.
[5]
Yang C, Lan S, Wang L, Shen W, Huang GQ. Big data driven edge–cloud collaboration architecture for cloud manufacturing: a software defined perspective. IEEE Access 2020;8:45938–50.
[6]
Kagermann H, Wahlster W, Helbig J. Recommendations for implementing the strategic initiative Industrie 4.0—final report of the Industrie 4.0 working group. Report. Berlin: Forschungsunion; 2013 Apr.
[7]
Yang C, Lan S, Shen W, Huang GQ, Wang X, Lin T. Towards product customization and personalization in IoT-enabled cloud manufacturing. Cluster Comput 2017;20(2):1717–30.
[8]
Saxena LK, Jain PK. An integrated model of dynamic cellular manufacturing and supply chain system design. Int J Adv Manuf Technol 2012;62:385–404.
[9]
Yang C, Shen W, Lin T, Wang X. IoT-enabled dynamic service selection across multiple manufacturing clouds. Manuf Lett 2016;7:22–5.
[10]
Meng Z, Wu Z, Gray J. Architecting ubiquitous communication and collaborative-automation-based machine network systems for flexible manufacturing. IEEE Syst J 2020;14(1):113–23.
[11]
McKeown N. Software-defined networking. Infocom Keynote Talk 2009;17 (2):30–2.
[12]
Li B, Zhang L, Wang S, Tao F, Cao J, Jiang X, et al. Cloud manufacturing: a new service-oriented networked manufacturing model. Comput Integr Manuf Syst 2010;16(1):1–7. Chinese.
[13]
Ren L, Zhang L, Wang L, Tao F, Chai X. Cloud manufacturing: key characteristics and applications. Int J Comput Integ M 2017;30(6):501–15.
[14]
Simeone A, Zeng Y, Caggiano A. Intelligent decision-making support system for manufacturing solution recommendation in a cloud framework. Int J Adv Manuf Technol 2021;112:1035–50.
[15]
Mourtzis D, Vlachou E, Milas N, Tapoglou N, Mehnen J. A cloud-based, knowledge-enriched framework for increasing machining efficiency based on machine tool monitoring. Proc IMechePart Eng BJ Eng Manuf 2019;233 (1):278–92.
[16]
Liu Y, Zhang L, Wang L, Xiao Y, Xu X, Wang MA, et al. A framework for scheduling in cloud manufacturing with deep reinforcement learning. Proceedings of 2019 IEEE 17th International Conference on Industrial Informatics; 2019 Jul 22–25; Helsinki, Finland. New York City: IEEE; 2019.
[17]
Queiroz J, Leitão P, Barbosa J, Oliveira E, Garcia G. An agent-based industrial cyber–physical system deployed in an automobile multi-stage production system. In: Borangiu T, Trentesaux D, Leitão P, Giret BA, editors. Service oriented, holonic and multi-agent manufacturing systems for industry of the future. Switzerland: Springer Cham; 2019. p. 379–91.
[18]
Liao H, Zhou Z, Zhao X, Zhang L, Mumtaz S, Jolfaei A, et al. Learning-based context-aware resource allocation for edge-computing-empowered Industrial IoT. IEEE Internet Things J 2020;7(5):4260–77.
[19]
He X, Tu Z, Xu X, Wang Z. Programming framework and infrastructure for self-adaptation and optimized evolution method for microservice systems in cloud-edge environments. Future Gener Comp Syst 2021;118:263–81.
[20]
Ren L, Meng Z, Wang X, Zhang L, Yang LT. A data-driven approach of product quality prediction for complex production systems. IEEE Trans Ind Inform 2021;17(9):6457–65.
[21]
Caggiano A. Cloud–based manufacturing process monitoring for smart diagnosis services. Int J Comput Integ Manuf 2018;31(7):612–23.
[22]
Ren L, Meng Z, Wang X, Lu R, Yang LT. A wide–deep-sequence model based quality prediction method in industrial process analysis. IEEE Trans Neur Net Lear 2020;31(9):3721–31.
[23]
Ren L, Liu Y, Wang X, Lu J, Deen MJ. Cloud–edge based lightweight temporal convolutional networks for remaining useful life prediction in IIoT. IEEE Internet Things J 2021;8(16):12578–87.
[24]
Ren L, Laili Y, Li X, Wang X. Coding-based large-scale task assignment for industrial edge intelligence. IEEE Trans Netw Sci Eng 2020;7(4):2286–97.
[25]
Kreutz D, Ramos FMV, Esteves Verissimo P, Esteve Rothenberg C, Azodolmolky S, Uhlig S. Software-defined networking: a comprehensive survey. Proc IEEE 2015;103(1):14–76.
[26]
Hu PA. A system architecture for software-defined industrial Internet of Things. Proceedings of 2015 IEEE International Conference on Ubiquitous Wireless Broadband; 2015 Oct 4–7; Montreal, QC, Canada. New York City: IEEE; 2015.
[27]
Salahuddin MA, Al-Fuqaha A, Guizani M. Software-defined networking for RSU clouds in support of the Internet of Vehicles. IEEE Internet Things 2015;2 (2):133–44.
[28]
Naeem F, Srivastava G, Tariq M. A software defined network based fuzzy normalized neural adaptive multipath congestion control for Internet of Things. IEEE Trans Netw Sci Eng 2020;7(4):2155–64.
[29]
Brody P, Pureswaran V. The new software-defined supply chain: preparing for the disruptive transformation of electronics design and manufacturing. Report. IBM Institute Business Value; 2013. Chinese.
[30]
Islam K, Shen W, Wang X. Wireless sensor network reliability and security in factory automation: a survey. IEEE Trans Syst Man Cybern Part C Appl Rev 2012;42(6):1243–56.
[31]
Gu B, Zhou Z, Mumtaz S, Frascolla V, Bashir AK. Context-aware task offloading for multi-access edge computing: matching with externalities. Proceedings of 2018 IEEE Global Communications Conference; 2018 Dec 9–13; Abu Dhabi, United Arab Emirates. New York City: IEEE; 2018.
[32]
Yang XS. Nature-inspired optimization algorithms. Elsevier; 2014.
PDF(2731 KB)

Accesses

Citation

Detail

段落导航
相关文章

/