具有客体适应型孔道的阴离子柱撑超微孔材料实现顺-/反-烯烃高效分离

Zhaoqiang Zhang, Xili Cui, Xiao-Ming Jiang, Qi Ding, Jiyu Cui, Yuanbin Zhang, Youssef Belmabkhout, Karim Adil, Mohamed Eddaoudi, Huabin Xing

工程(英文) ›› 2022, Vol. 11 ›› Issue (4) : 82-88.

PDF(1765 KB)
PDF(1765 KB)
工程(英文) ›› 2022, Vol. 11 ›› Issue (4) : 82-88. DOI: 10.1016/j.eng.2021.10.013
研究论文

具有客体适应型孔道的阴离子柱撑超微孔材料实现顺-/反-烯烃高效分离

作者信息 +

Efficient Splitting of Trans-/Cis-Olefins Using an Anion-Pillared Ultramicroporous Metal-Organic Framework with Guest-Adaptive Pore Channels

Author information +
History +

摘要

顺-/反-烯烃异构体在石油化工行业具有重要应用价值,然而其极为相似的物理化学性质为节能高效的分离纯化技术的开发带来了巨大的挑战。本文设计的阴离子柱撑超微孔金属-有机框架材料,即ZU-36-Ni和ZU-36-Fe,首次实现了基于分子筛分效应的顺-/反-2-丁烯高效分离。ZU-36-Ni 具有智能的客体适应型孔道结构,其对反-2-丁烯呈现出高吸附容量(2.45 mmol∙g−1)并对顺-2-丁烯高效排阻,可从混合气中分离获得99.99%的高纯度顺-2-丁烯气体。密度泛函理论计算表明:当反-2-丁烯进入孔道时,ZU-36-Ni 的有机配体在主-客体相互作用下可定向旋转,从而导致孔穴扩张并使孔道更加适应反-2-丁烯形状及尺寸,加之ZU-36-Ni 具有可匹配反-2-丁烯三维尺寸的最优孔穴维度,使得反-2-丁烯可以被高效吸附。ZU-36-Ni的适应性行为可最大限度地强化ZU-36-Ni 和反-2-丁烯的主-客体作用,不仅有利于提升反-2-丁烯的优先吸附及动力学扩散行为,同时可实现对顺-2-丁烯的高效分子筛分。本工作为拓展孔穴工程在先进智能或适应型多孔材料在客体分子辨识领域的应用提供了新思路。

Abstract

Trans-/cis-olefin isomers play a vital role in the petrochemical industry. The paucity of energy-efficient technologies for their splitting is mainly due to the similarities of their physicochemical properties. Herein, two new tailor-made anion-pillared ultramicroporous metal–organic frameworks (MOFs), ZU-36-Ni and ZU-36-Fe (GeFSIX-3-Ni and GeFSIX-3-Fe) are reported for the first time for the efficient trans-/cis-2-butene (trans-/cis-C4H8) mixture splitting by enhanced molecular exclusion. Notably, ZU-36-Ni unexpectedly exhibited smart guest-adaptive pore channels for trapping trans-C4H8 with a remarkable adsorption capacity (2.45 mmol∙g−1) while effectively rejecting cis-C4H8 with a high purity of 99.99%. The dispersion-corrected density functional theory (DFT-D) calculation suggested that the guest-adaptive behavior of ZU-36-Ni in response to trans-C4H8 is derived from the organic linker rotation and the optimal pore dimensions, which not only improve the favorable adsorption/diffusion of trans-C4H8 with optimal host–guest interactions, but also enhance the size-exclusion of cis-C4H8. This work opens a new avenue for pore engineering in advanced smart or adaptive porous materials for specific applications involving guest molecular recognition.

关键词

吸附分离 / 顺-/反-丁烯 / 超微孔金属-有机框架材料 / 孔工程 / 客体适应性行为 /

Keywords

Adsorption and separation / trans / -/ / cis / -butene / Ultramicroporous metal–organic frameworks / Pore engineering / Guest-adaptive

引用本文

导出引用
Zhaoqiang Zhang, Xili Cui, Xiao-Ming Jiang. 具有客体适应型孔道的阴离子柱撑超微孔材料实现顺-/反-烯烃高效分离. Engineering. 2022, 11(4): 82-88 https://doi.org/10.1016/j.eng.2021.10.013

参考文献

[1]
Wojcieszak R, Santarelli F, Paul S, Dumeignil F, Cavani F, Gonçalves RV. Recent developments in maleic acid synthesis from bio-based chemicals. Sustain Chem Process 2015;3(1):9.
[2]
Fenard Y, Dayma G, Halter F, Foucher F, Serinyel Z, Dagaut P. Experimental and modeling study of the oxidation of 1-butene and cis-2-butene in a jet-stirred reactor and a combustion vessel. Energy Fuels 2015;29(2):1107–18.
[3]
Limsangkass W, Praserthdam P, Phatanasri S, Panpranot J, Poovarawan N, Jareewatchara W, et al. Comparative effect of nano-sized ZrO2 and TiO2 additional supports in silica-supported tungsten catalysts on performance in metathesis of mthylene and 2-butene to propylene. Catal Lett 2014;144 (9):1524–9.
[4]
Ricci G, Leone G, Boccia AC, Pierro I, Zanchin G, Mauri M, et al. Perfectly alternating ethylene/2-butene copolymers by hydrogenation of highly stereoregular 1,4-poly(1,3-diene)s: synthesis and characterization. Macromolecules 2017;50(3):754–61.
[5]
Limsangkass W, Phatanasri S, Praserthdam P, Panpranot J, Jareewatchara W, Na Ayudhya SK, et al. Effect of nano-sized TiO2 additional support in WO3/SiO2 catalyst systems on metathesis of ethylene and trans-2-butene to propylene. Catal Lett 2013;143(9):919–25.
[6]
Maksasithorn S, Praserthdam P, Suriye K, Devillers M, Debecker DP. WO3-based catalysts prepared by non-hydrolytic sol-gel for the production of propene by cross-metathesis of ethene and 2-butene. Appl Catal A Gen 2014;488:200–7.
[7]
Tijsebaert B, Varszegi C, Gies H, Xiao FS, Bao X, Tatsumi T, et al. Liquid phase separation of 1-butene from 2-butenes on all-silica zeolite RUB-41. Chem Commun 2008(21):2480–2.
[8]
Chen J, Wang J, Guo L, Li L, Yang Q, Zhang Z, et al. Adsorptive separation of geometric isomers of 2-butene on gallate-based metal–organic frameworks. ACS Appl Mater Interfaces 2020;12(8):9609–16.
[9]
Gehre M, Guo Z, Rothenberg G, Tanase S. Sustainable separations of C4- hydrocarbons by using microporous materials. ChemSusChem 2017;10 (20):3947–63.
[10]
Assen AH, Virdis T, De Moor W, Moussa A, Eddaoudi M, Baron G, et al. Kinetic separation of C4 olefins using Y-fum-fcu-MOF with ultra-fine-tuned aperture size. Chem Eng J 2021;413:127388.
[11]
Maes M, Alaerts L, Vermoortele F, Ameloot R, Couck S, Finsy V, et al. Separation of C5-hydrocarbons on microporous materials: complementary performance of MOFs and zeolites. J Am Chem Soc 2010;132(7):2284–92.
[12]
Liu H, He Y, Jiao J, Bai D, Chen DL, Krishna R, et al. A porous zirconium-based metal–organic framework with the potential for the separation of butene isomers. Chemistry 2016;22(42):14988–97.
[13]
Kishida K, Okumura Y, Watanabe Y, Mukoyoshi M, Bracco S, Comotti A, et al. Recognition of 1,3-butadiene by a porous coordination polymer. Angew Chem Int Ed Engl 2016;55(44):13784–8.
[14]
Liao PQ, Huang NY, Zhang WX, Zhang JP, Chen XM. Controlling guest conformation for efficient purification of butadiene. Science 2017;356 (6343):1193–6.
[15]
Bao Z, Chang G, Xing H, Krishna R, Ren Q, Chen B. Potential of microporous metal–organic frameworks for separation of hydrocarbon mixtures. Energy Environ Sci 2016;9(12):3612–41.
[16]
Li JR, Sculley J, Zhou HC. Metal–organic frameworks for separations. Chem Rev 2012;112(2):869–932.
[17]
Zhang Z, Peh SB, Kang C, Chai K, Zhao D. Metal–organic frameworks for C6–C8 hydrocarbon separations. Energy Chem 2021;3(4):100057.
[18]
Adil K, Belmabkhout Y, Pillai RS, Cadiau A, Bhatt PM, Assen AH, et al. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chem Soc Rev 2017;46 (11):3402–30.
[19]
Zhao X, Wang Y, Li DS, Bu X, Feng P. Metal–organic frameworks for separation. Adv Mater 2018;30(37):e1705189.
[20]
Ding Q, Zhang Z, Yu C, Zhang P, Wang J, Cui X, et al. Exploiting equilibriumkinetic synergetic effect for separation of ethylene and ethane in a microporous metal–organic framework. Sci Adv 2020;6(15):eaaz4322.
[21]
Lin R, Xiang S, Zhou W, Chen B. Microporous metal–organic framework materials for gas separation. Chem 2020;6(2):337–63.
[22]
Fan W, Yuan S, Wang W, Feng L, Liu X, Zhang X, et al. Optimizing multivariate metal–organic frameworks for efficient C2H2/CO2 separation. J Am Chem Soc 2020;142(19):8728–37.
[23]
Bloch ED, Queen WL, Krishna R, Zadrozny JM, Brown CM, Long JR. Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 2012;335(6076):1606–10.
[24]
Antypov D, Shkurenko A, Bhatt PM, Belmabkhout Y, Adil K, Cadiau A, et al. Differential guest location by host dynamics enhances propylene/propane separation in a metal–organic framework. Nat Commun 2020;11(1):6099.
[25]
Cadiau A, Adil K, Bhatt PM, Belmabkhout Y, Eddaoudi M. A metal–organic framework-based splitter for separating propylene from propane. Science 2016;353(6295):137–40.
[26]
Lee CY, Bae YS, Jeong NC, Farha OK, Sarjeant AA, Stern CL, et al. Kinetic separation of propene and propane in metal–organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. J Am Chem Soc 2011;133(14):5228–31.
[27]
Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal– organic frameworks. Chem Soc Rev 2009;38(5):1477–504.
[28]
Zhang Z, Peh SB, Wang Y, Kang C, Fan W, Zhao D. Efficient trapping of trace acetylene from ethylene in an ultramicroporous metal–organic framework: synergistic effect of high-density open metal and electronegative sites. Angew Chem Int Ed Engl 2020;59(43):18927–32.
[29]
Xue DX, Belmabkhout Y, Shekhah O, Jiang H, Adil K, Cairns AJ, et al. Tunable rare earth fcu-MOF platform: access to adsorption kinetics driven gas/vapor separations via pore size contraction. J Am Chem Soc 2015;137 (15):5034–40.
[30]
Yang S, Ramirez-Cuesta AJ, Newby R, Garcia-Sakai V, Manuel P, Callear SK, et al. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nat Chem 2015;7(2):121–9.
[31]
Zhang Z, Ding Q, Cui J, Cui X, Xing H. Fine-tuned pore dimension in hybrid ultramicroporous materials boosting simultaneous trapping of trace alkynes from alkenes. Small 2020;16(49):e2005360.
[32]
Cui X, Chen K, Xing H, Yang Q, Krishna R, Bao Z, et al. Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene. Science 2016;353(6295):141–4.
[33]
Wu X, Xie Y, Liu J, He T, Zhang Y, Yu J, et al. Integrating multiple adsorption sites and tortuous diffusion paths into a metal–organic framework for C3H4/ C3H6 separation. J Mater Chem A 2019;7(44):25254–7.
[34]
Zhang Z, Cui X, Yang L, Cui J, Bao Z, Yang Q, et al. Hexafluorogermanate (GeFSIX) anion-functionalized hybrid ultramicroporous materials for efficiently trapping acetylene from ethylene. Ind Eng Chem Res 2018;57 (21):7266–74.
[35]
Zhang PD, Wu XQ, He T, Xie LH, Chen Q, Li JR. Selective adsorption and separation of C2 hydrocarbons in a ‘‘flexible-robust” metal–organic framework based on a guest-dependent gate-opening effect. Chem Commun 2020;56 (41):5520–3.
[36]
Li J, Bhatt PM, Li J, Eddaoudi M, Liu Y. Recent progress on microfine design of metal–organic frameworks: structure regulation and gas sorption and separation. Adv Mater 2020;32(44):2002563.
[37]
Zhang Z, Yang Q, Cui X, Yang L, Bao Z, Ren Q, et al. Sorting of C4 olefins with interpenetrated hybrid ultramicroporous materials by combining molecular recognition and size-sieving. Angew Chem Int Ed Engl 2017;56(51):16282–7.
[38]
Zhang Z, Tan B, Wang P, Cui X, Xing H. Highly efficient separation of linear and branched C4 isomers with a tailor-made metal–organic framework. AIChE J 2020;66(7):e16236.
[39]
Sholl DS, Lively RP. Seven chemical separations to change the world. Nature 2016;532(7600):435–7. Corrected in: Nature 2016;533(7601):316.
[40]
van den Bergh J, Gücüyener C, Pidko EA, Hensen EJM, Gascon J, Kapteijn F. Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. Chemistry 2011;17(32):8832–40.
[41]
Palomino M, Cantín A, Corma A, Leiva S, Rey F, Valencia S. Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chem Commun 2007 (12):1233–5.
[42]
Zhu W, Kapteijn F, Moulijn JA, Jansen JC. Selective adsorption of unsaturated linear C4 molecules on the all-silica DD3R. Phys Chem Chem Phys 2000;2 (8):1773–9.
[43]
Subramanian S, Zaworotko MJ. Porous solids by design:[Zn(4,4, - bpy)2(SiF6)]n.xDMF, a single framework octahedral coordination polymer with large square channels. Angew Chem Int Ed Engl 1995;34(19):2127–9.
[44]
Noro S, Kitagawa S, Kondo M, Seki K. A new, methane adsorbent, porous coordination polymer. Angew Chem Int Ed Engl 2000;39(12):2081–4.
[45]
Shekhah O, Belmabkhout Y, Chen Z, Guillerm V, Cairns A, Adil K, et al. Made-toorder metal–organic frameworks for trace carbon dioxide removal and air capture. Nat Commun 2014;5(1):4228.
[46]
O’Nolan D, Kumar A, Zaworotko MJ. Water vapor sorption in hybrid pillared square grid materials. J Am Chem Soc 2017;139(25):8508–13.
[47]
Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 2013;495(7439):80–4.
[48]
Kumar A, Hua C, Madden DG, O’Nolan D, Chen KJ, Keane LJ, et al. Hybrid ultramicroporous materials (HUMs) with enhanced stability and trace carbon capture performance. Chem Commun 2017;53(44):5946–9.
[49]
Zhang Z, Ding Q, Cui X, Jiang XM, Xing H. Fine-tuning and selective-binding within an anion-functionalized ultramicroporous metal–organic framework for efficient olefin/paraffin separation. ACS Appl Mater Interfaces 2020;12 (36):40229–35.
[50]
Chen KJ, Scott H, Madden D, Pham T, Kumar A, Bajpai A, et al. Benchmark C2H2/ CO2 and CO2/C2H2 separation by two closely related hybrid ultramicroporous materials. Chem 2016;1(5):753–65.
[51]
Zhang Z, Ding Q, Peh SB, Zhao D, Cui J, Cui X, et al. Mechano-assisted synthesis of an ultramicroporous metal–organic framework for trace CO2 capture. Chem Commun 2020;56(56):7726–9.
[52]
Bhatt PM, Belmabkhout Y, Cadiau A, Adil K, Shekhah O, Shkurenko A, et al. A fine-tuned fluorinated MOF addresses the needs for trace CO2 removal and air capture using physisorption. J Am Chem Soc 2016;138(29):9301–7.
[53]
Walton KS, Sholl DS. Predicting multicomponent adsorption: 50 years of the ideal adsorbed solution theory. AIChE J 2015;61(9):2757–62.
PDF(1765 KB)

Accesses

Citation

Detail

段落导航
相关文章

/