用于人体器官的无线生物电子器件的最新研究进展——对利用天线系统进行生物遥测和无线能量传输的前景展望

Ahsan Noor Khan , Young-ok Cha , Henry Giddens , 郝阳

工程(英文) ›› 2022, Vol. 11 ›› Issue (4) : 27 -41.

PDF (2906KB)
工程(英文) ›› 2022, Vol. 11 ›› Issue (4) : 27 -41. DOI: 10.1016/j.eng.2021.10.019

用于人体器官的无线生物电子器件的最新研究进展——对利用天线系统进行生物遥测和无线能量传输的前景展望

作者信息 +

Recent Advances in Organ Specific Wireless Bioelectronic Devices: Perspective on Biotelemetry and Power Transfer Using Antenna Systems

Author information +
文章历史 +
PDF (2975K)

摘要

电子学和生物学的结合催生了生物电子学,为研究人员实现对尚未被满足的治疗方案的需求带来了激动人心的机遇。纳米电子学及柔性、生物相容性材料的发展显示出潜在的临床应用(如生理传感、药物输送、心血管监测和脑刺激)价值。迄今为止,大多数生物电子器件都需要通过有线连接来进行电子控制,因此对患者来说,这些器件的植入既复杂又缺乏便利性。而作为替代方案,无线技术正在蓬勃发展,形成了能够提供无创控制、生物遥测和无线电能传输(WPT)的生物电子学。本文综述了无线生物电子学及其在器官特异性治疗(包括疾病和功能障碍)应用中的持续发展。本文重点描述了天线的关键特性,即辐射特性、材料选择、与其他电子器件的集成和测量。尽管无线生物电子学的最新进展有望增加对器件功能的控制,但在技术商业化以及应对不断扩大的未来医疗需求方面仍面临诸多挑战。

Abstract

Highlights Bioelectronic devices have revolutionized the course of therapeutic treatment with their ability to harness neuronal activities in the human body. Recent advances in the field of soft, stretchable and biocompatible materials have enabled the development of bioelectronics to treat wide range of chronic ailments and disorders. Such treatments involve the confluence of electronics with neuronal cells or tissues, and mostly require surgical operation to implant the bioelectronic device. For recording neural activities and programming the device non-invasively, copious amount of research is in progress to devise wireless technology enabled bioelectronics. This paper discusses the latest developments in wireless bioelectronic devices for organ specific treatments, including gastrointestinal tract monitoring, retinal prosthesis, auditory nerve and brain stimulation. Major highlights include seminal components that mediate the overall wireless operation, such antennas, rectifiers, amplifier and integrated circuits. Moreover, the constituting materials of antennas, operational frequency and their integration with other electronic components are discussed. Replete perspective on the strategies to energize bioelectronics using wireless power transfer is explained. Communication protocols for biotelemetry are also discussed.The integration of electronics and biology has spawned bioelectronics and opened exciting opportunities to fulfill the unmet needs of therapeutic treatments. Recent developments in nanoelectronics and soft and biocompatible materials have shown potential applicability to clinical practices, including physiological sensing, drug delivery, cardiovascular monitoring, and brain stimulation. To date, most bioelectronic devices require wired connections for electrical control, making their implantation complicated and inconvenient for patients. As an alternative, wireless technology is proliferating to create bioelectronics that offer noninvasive control, biotelemetry, and wireless power transfer (WPT). This review paper provides a comprehensive overview of wireless bioelectronics and ongoing developments in their applications for organ-specific treatments, including disorders and dysfunctions. The main emphasis is on delineating the key features of antennas, namely their radiation characteristics, materials, integration with rest of the electronics, and experimental setup. Although the recent progress in wireless mediated bioelectronics is expected to enhance the control of its functionalities, there are still numerous challenges that need to be addressed for commercialization, as well as to address ever-expanding evolving future therapeutic targets.

关键词

生物电子学 / 神经植入物 / 药物输送 / 天线 / 无线电能

Key words

Bioelectronics / Neural implants / Drug delivery / Antennas / Wireless power

引用本文

引用格式 ▾
Ahsan Noor Khan,Young-ok Cha,Henry Giddens,郝阳. 用于人体器官的无线生物电子器件的最新研究进展——对利用天线系统进行生物遥测和无线能量传输的前景展望[J]. 工程(英文), 2022, 11(4): 27-41 DOI:10.1016/j.eng.2021.10.019

登录浏览全文

4963

注册一个新账户 忘记密码

1、 引言

植入式电子技术的最新进展为改进医疗实践中的诊断和治疗程序创造了独特的机会,而生物电子学则是可植入电子技术的关键方面之一。生物电子器件可在人体内运行,能以脑刺激器、心脏起搏器、人工耳蜗和视网膜植入物等形式传输电脉冲,以操纵器官功能和神经活动(图1)[1‒4]。目前研究人员正在进行广泛的研究,以设计灵活、无毒、生物相容且具有成本效益的小型生物电子器件,从神经信号中提取生理信息,以治疗各种疾病[5‒7]。尽管人们通常认为这些器件是植入物,但它们的可穿戴应用最近一直是人们感兴趣的话题[8]。典型的多功能生物电子器件包括:①电源或电池;②天线系统[9‒10];③控制电路;④用于携带药物制剂的机械稳定的微型容器[11‒12];⑤超低功率电子器件[13‒14]。

图1 (a)用于器官特异性治疗和诊断的无线控制生物电子器件示意图。(b)体内发射天线与生物电子器件无线连接。无线连接可以实现多种功能,包括无线电能传输(WPT)和数据通信。WPT为器件供电,无需电池。双向数据通信则用于实时监测和控制器件性能。

天线系统和相关的无线电路提供了一种无创方式,用于将大量实时数据(包括生理信息、器官健康和器件状态)传输到外部单元。因此,无线功能提供了便利,这与需要外科手术进行数据提取的器件不同。然而,电磁信号在通过身体组织传播时会发生衰减和吸收,从而降低器件在高效和稳健的无线数据传输链路方面的性能[15]。文献[16]中提出了一些通过身体减少路径损耗的策略。众所周知,身体组织允许电磁波在低频下有效传播[17],但这是以大型天线为代价的。然而,严格的小型化要求限制了天线在紧凑可用空间内的集成[18‒19]。因此,天线的设计不仅对小型化至关重要,而且要考虑对辐射效率的不利影响(这些影响已经因身体组织的损耗而加剧)[20‒22]。天线小型化技术主要集中在低频波段,包括医疗植入通信服务(402~405 MHz)、工业科学和医疗(ISM)波段[23‒24],以及接收单元最佳信号强度的MedRadio(401~406 MHz)[23,25‒27]。此外,生物电子天线已被提议用于极低频,如13.56 MHz [28‒30]和5 MHz [12]。

人们对微加工技术和柔性材料日益增长的兴趣也逐渐渗透到混合式、生物兼容、共形、小型化、高效和软天线的发展中,为天线在生物电子器件中的无缝集成铺平了道路[1‒2,8,31‒32]。虽然生物电子器件可以有效地调节神经活动,但它们的寿命是有限的。能量收集,包括压电[33‒34]、热电[35]和生物电势[36]技术的使用,已被用作传统电池来源的潜在替代品。尽管这些技术可以减小整体体积,但产生的功率密度不足以连续运行。最近,基于近场电磁耦合的无线电能传输(WPT)技术已被用于生物电子器件,提供了多样化的功能和更长的使用时间,同时消除了与电池电量相关的限制[37‒38]。为了为生物电子器件构思有效的天线设计,目前仍在进行大量的尝试,以重塑其WPT能力。

本文强调了天线系统的最新进展,特别是那些为无线生物电子器件设计的天线系统。本文的重点在于生物相容性材料、封装、制造方法、工作频率和辐射特性背景下的天线设计。随后的章节则讨论了受益于诊断和治疗应用中潜在用途的不同身体器官。

本文包含大量自然语言处理(NLP)辅助的调查策略;分析了大量的相关文献,包括人类未经辅助、可能忽略的关键研究及其发现;基于NLP的文本摘要技术可以自动提取原始内容范围内的关键思想或最相关的信息,这一点已使用Rouge矩阵进行了验证。利用这些经过验证的NLP生成的摘要,作者改进了本文的论述范围。

2、 胃肠道监测

胃肠道(GI)能反映人体几乎每个器官的重大生理机能[18]。与GI相关的常见疾病包括吞咽困难、胃食管反流、功能性消化不良、胃痉挛、慢性假性肠梗阻和肠易激综合征[39]。为了治疗此类疾病,最近讨论了可食入生物电子器件,包括内窥镜[3]、三维(3D)打印的胃电子器件[40]、细菌电子系统[41]、可食入水凝胶[42]和无线胶囊内窥镜器件[23,43‒45]。其中一些器件已商业化,且易于用于临床程序,以一种无创的方式协助医学专家对这些疾病进行诊断和早期发现。例如,一种典型的胶囊内窥镜器件可以实时检测生物分子,并通过无线链路将体内的高分辨率图像发送给医生[23,46‒47]。医生可以通过解读这些图像来诊断各种疾病或病症,并制定相应的治疗方案[48]。

可摄取器件包括传感器、电池单元、天线、摄像头和许多其他电子元件[49]。文献中已经探讨了许多材料和制造方法,用于实现微型化[50]。新兴的3D打印技术也被用于制造微型胃电子器件[图2(a)] [40]。然而,以最佳效率集成天线,以实现与外部单元的可靠无线通信仍然是一项重大挑战。文献[19,23,44‒45,51‒65]研究了一系列用于可摄取器件的天线设计,并使用柔性材料实现了这些设计在共形器件周围的无缝集成[图2(b)] [66‒67]。由于弯曲的结构能够在空间有限的情况下实现低频共振,因此,这种结构常被用于可摄取共形天线 [23,68]。除了共形结构外,很少有可摄取生物电子器件被制作用于WPT和通信的嵌入式天线[图2(c)] [69]。一些研究报道了在纤维素纤维或可生物降解的复合薄膜上瞬时可生物降解的印刷天线,以改善可摄取天线的辐射特性[70‒71]。

图2 可摄取生物电子器件。(a)带有给药组件的3D打印胃部电子器件。插图显示了在2.4 GHz的蓝牙射频(RF)下运行的天线的集成[40]。(b)围绕胶囊形状的器件制作的环形天线,用于无线内窥镜检查。(c)在印制电路板(PCB)上集成部件[可编程负载电阻(数字控制电位器,DCP)、晶体(XTAL)、微控制器(μP)、RF匹配网络(MATCH)和天线(ANT)在正面,电池(BATT)和去耦电容器(CAP)在背面]。该PCB被嵌入在一个胶囊状的可摄取器件中。(b)经IEEE许可,转载自参考文献[23],©2019;(c)经Springer Nature许可,转载自参考文献[69],©2017。

天线与其他电子电路部分的阻抗匹配是无线信号可靠发射和接收信号的主要设计标准。人体组织的介电特性随频率变化,因此会使天线的谐振频率失调。适应性强的宽频带阻抗匹配网络可以成为植入式和可摄取天线的有效替代方案,这些天线在有损耗的身体组织中会出现失谐现象[72]。此外,可摄取电子器件在消化道中移动时可能会出现随机定向。在此背景下,文献中提出了圆极化[60]和双极化[73]全向天线,以减少与外部单元通信链路的损耗。为了跟踪器件在消化道中的位置,采用了聚焦于分析外部单元接收到的信号强度的定位技术[43,48]。

尽管可摄取无线控制生物电子器件取得了相当大的进展,但其电池容量依然有限,导致此类器件的运行时间较短。文献中考虑了植入生物相容性电池,但会增加整个器件的尺寸,因此不方便。作为替代方案,WPT被认为是可摄取生物电子器件的首要策略[69,74‒75]。

3、 视网膜假体

黄斑变性(MD)和视网膜色素变性(RP)等眼部疾病主要影响老年群体的视力,可导致完全失明或视觉功能障碍[76‒77]。人体视网膜中的空间有限,是治疗眼部疾病的主要瓶颈。此外,由于存在感染的风险,研究人员认为带连接线的视网膜植入物不可行。因此,用于视网膜假体的无线技术已被广泛报道,以实现对植入物功能的无线控制[78‒87]。

视网膜假体的典型系统包括眼外系统和眼内系统[77]。视觉数据由眼外系统捕获,并通过天线系统无线传输,而眼内系统则由电极阵列、天线和信号处理单元组成[88‒89]。天线用于建立眼外系统和眼内系统之间的无线链路,以及进行功率传输[81]。小型天线是视网膜植入物的首选,其尺寸的微型化技术已在文献中得到广泛讨论,如弯曲的微带线[90]、导线[91]、折叠的偶极子[92]。尽管如此,对集成天线于眼内系统器件至关重要的微型化技术,往往会导致窄带宽和低收益。参考文献[77]报道了一种三角形的微带贴片天线,以提高无线视网膜假体的植入与外部子系统的带宽。

参考文献[93‒94]报道了用于电刺激视网膜神经元的视网膜前膜植入物。该器件与接收(Rx)线圈、电子器件和电极阵列相结合,通过手术植入眼睛周围。传输(Tx)线圈被整合到外部眼镜中,外部眼镜还包括视频处理单元(VPU)、摄像机和线圈。Tx线圈将处理后的视频图像数据传输到安装在眼睛周围的Rx线圈。3.156 MHz的振幅调制用于Tx和Rx线圈之间的数据通信以及WPT。另一项研究表明,在视网膜前部放置基于线圈的天线可以提高与主线圈的电感耦合效率[图3(a)] [95]。这主要是因为眼睛的前部比颞侧有更多的空间。因此,可以植入一个相对较大的线圈,从而有可能改善辐射特性。为了减轻眼部周围组织的感染,将线圈缠绕在一个类似于眼睛曲率的球形芯轴上。如图3(b)所示,使用由金铸成的线圈,并将其制作成与眼睛弧度相匹配的球形。

图3 视网膜假体和相关的主电源、数据线圈。(a)器件原型。眼睛模型由塑料制成;电源和数据线圈由金制成。(b)外部主线圈封装于聚二甲基硅氧烷(PDMS)。经IEEE许可,转载自文献[95],©2011。

在宽带宽条件下,人们研究了工作频率为1.45 GHz和2.45 GHz的双单元视网膜假体的小型微带天线[77]。对于眼外单元,在一副眼镜上设计了一个平面倒F天线(PIFA),而正三角形的微带眼内天线被集成在眼睛的紧凑睫状肌内。在有人类头部模型存在的情况下,对无线链路的耦合性能进行评估,而用眼睛模型进行测量。

4、 用于刺激听觉神经的人工耳蜗

听力损失与影响人们生活方式的感觉-神经障碍有关[96‒97]。在过去的几十年中,植入式助听器已成功实现商业化,并改变了人工耳蜗治疗方式。这些器件能够通过用电信号刺激听觉神经来恢复听力[98‒100]。

无线人工耳蜗的特点在于具有通过线圈耦合的外部和内部单元(图4)[101]。外部单元用于处理声音信号,然后在听力损失的频率范围内产生刺激信号[101]。这些信号通过低频信号从外部单元无线传输到植入体(图4)。收到的信号经过解调和处理,通过电极阵列产生电流,并穿入耳蜗以刺激听觉神经。外部单元和植入单元之间的双向通信对于刺激模式的有效传输以及WPT至关重要。

图4 人工耳蜗的原理图和组件及其与外部单元的无线连接。DSP:数字信号处理器;LSK:负载调制键控;BPSK:二进制相移键控;POPA:可编程输出功率放大器;DAC:数模转换器;CDR:充电数据记录。经IEEE许可,转载自参考文献[101],©2019。

通常会给人工耳蜗配置线圈,因为线圈能够通过近场通信(NFC)中的磁场进行有效通信[101‒102]。然而,这些线圈经常会受到各种电磁干扰的影响。为了克服这一局限性,研究人员研制出一种屏蔽线圈,用作人工耳蜗的发射线圈[102]。

参考文献[96,103‒104]已经讨论了其他几种类型的天线。参考文献[96,104]报道了在ISM波段运行的环形天线设计。此外,为了实现高数据速率的通信,参考文献[103]报道了一个超宽带收发器。由于超宽带收发器的特性,整个系统的功耗很低。

5、 高温热疗

高温热疗技术通过利用人体组织的热反应限制热量,并用电流引起的焦耳热来切除肿瘤[105‒111]。在临床实践中,该技术偶尔与化疗或放疗联合应用。最近,有报道称无线控制支架用于热疗治疗[112‒114]。这些支架被当作加热器,只有当外部射频(RF)与其自身的共振相匹配时才会发生共振。在最近的报道中,一种镀金支架以电感的形式出现,并与电容器微芯片集成在一起[112]。整个支架用40 µm厚的聚对二氯甲苯薄膜封装,并用外部全向天线系统进行刺激。体外实验证实了支架在外部RF功率下产生热量的能力。

参考文献[113]讨论了用于无线内热治疗的类似方法,其中支架充当频率选择性的无线加热器(图5)。该加热器具有电感-电容(LC)槽电路,该电路被调谐到外部RF场,并来源于一个环形天线(直径为12 cm)。加热后,支架施加压力,产生新的内膜增生,以达到支架内再狭窄。参考文献[115]讨论了一种基于球囊导管的生物相容性(1.5 mm × 2 mm × 0.6 mm)断路器方法,以控制支架的温升。该断路器内置一个电容。采用微加工的形状记忆合金悬臂作为热敏开关来实现断路器的开断。文献[116]报道了一种将支架作为天线的有趣方法。该支架不仅用于内热治疗,更有实验证明了这种支架在915 MHz和2.45 GHz的ISM频段上建立无线数据和电力传输链路的潜力。整个器件仅利用了一个专用集成电路,并在1.56 mm2内使用一种0.13 µm互补金属氧化物半导体(CMOS)工艺制作。整个系统能够从2.4 GHz的入射波中采集RF功率,而在915 MHz频段上传输数据。

图5 一种用于无线内热治疗再狭窄的活性支架器件。经Elsevier许可,转载自参考文献[113],©2015。

6、 心血管医疗

心血管疾病(CVD)与心脏和血管有关,在全球范围内影响人类的预期寿命。因此,近年来人们广泛考虑利用生物电子器件心脏功能进行实时监测,以进行早期CVD检测[117‒122]。柔性和弹性材料已被用于制造心脏持续监测器件,如心脏起搏器、机器人套筒和电子支架[119]。其中许多器件都配备了无线控制单元,用于将心律传输到外部器件;这对心脏监测来说很方便,不像传统的可穿戴心电图(ECG)器件,需要多根导线将传感器与身体配对[121,123‒127]。

无线心脏监测器的上述优势为该器件能够进行双向数据通信[128‒130]和WPT [131‒134]的天线设计提供了巨大的机会。文献中经常讨论用于心脏起搏器的线圈形[129,131‒138]、环形[139]、单极[140]、贴片[141]和周向[142]天线设计,而最常见的数据通信方法是基于NFC [4,121,143]和RF识别(RFID)。

参考文献[121]报道了一种灵活的天线设计,用于柔性心脏可穿戴传感器,可以将数据传输到外部智能手机上[图6(a)]。在另一项研究中,研究人员提出了一种用于人工心脏起搏器的PIFA,工作频率为403 MHz [144]。天线表现出宽阻抗带宽特性,并采用共面波导供电。天线的谐振频率由一个L形隔板控制。整个起搏器配置尺寸为30 mm × 35 mm × 7 mm。在人体等效组织模型中对该天线性能进行评估,显示在403 MHz时的峰值增益为-24.61 dBi。

图6 用于心血管疾病治疗的生物电子器件。(a)可穿戴心脏传感器器件示意图。展示了多个组件和层的集成。柔性天线是在带有NFC和电池模块的聚酰亚胺(PI)衬底上制造的。(b)基于整流天线的起搏器原型。(i)制造的整流天线;(ii)制造带有充电元件的起搏电路;(iii)集成前的无引线起搏器示意图;(iv) 完整制造的起搏器的前视图;(v)用于植入组织的探针耦合。(c)制造的1 × 2发射阵列与相关馈电网络相连(顶部),以及在接地线上蚀刻的D形槽(底部)。尺寸(单位:mm):W1 = 9.91、W2 = 7.8、W3 = 4.25、W4 = 2.8、L1 = 60.5、L2 = 55.6、R = 45。(a)经Springer Nature许可,转载自参考文献[121],©2018;(b)、(c)经IEEE许可转载自参考文献[139],©2019。

在植入式可编程控制器中设计一种433 MHz的无线电收发器[145]。为了克服电池寿命有限的挑战,研究人员提议为心脏起搏器设计一个工作频率为954 MHz的植入式整流天线[图6(b)] [139]。整流天线由六边形分形构建的平面偶极子天线实现,并与阻抗匹配和整流电路同化。为了实现小型化,矩形条与高介电常数介质基板(ϵr= 9.8)一起构成天线结构。为了展示系统的WPT能力,研究人员使用导电条制作了一个可穿戴发射天线阵列(1 × 2)[图6(c)]。该结构的地线被截断以实现定向波束和良好的阻抗匹配。衬底厚度较薄(0.254 mm),有助于将天线阵列整合到测试主体身上。起搏器的体内测试是通过使用多塞特羊模型(Dorset breed model)进行的[图7(a)]。可穿戴发射阵列被置于胸部上方,向植入器件发射21 dBm的RF功率。图7(b)显示了由整流天线测量的整流直流电压(DC)与输入RF功率的关系。

图7 (a)用于在多塞特羊模型中测试起搏器的体内实验器件示意图。发射阵列连接功率放大器和信号发生器。(b)无电池、植入式无线异步起搏系统原型。展示了系统的不同制造组件,尺寸(单位:mm)为 W = 12、L = 10、P = 15、B = 12.4、C = 4.5和D = 14.4。(a)经IEEE许可,转载自参考文献[139],©2019;(b)经IEEE许可,转载自参考文献[141],©2019。

相关报道称,已经有研究人员将基于整流天线的类似方法用于无电池异步心脏起搏系统[141]。植入器件由一个电极天线(共振频率为1.2 GHz)、一个阻抗匹配电路和一个整流器组成。天线采用了平面微带拓扑结构,并与一个互补的分裂环谐振器集成:整个系统的尺寸为10 mm ×10 mm。使用外置喇叭天线向植入器件传递RF功率,喇叭天线之间的距离为25 cm。该系统被植入在羊的左心室的心外膜表面。在植入的情况下,对天线的性能进行评估。据报道,该天线在1.25 GHz时的回波损耗为-17 dB,而测量的实际增益为-1.5 dBi。外部喇叭天线发射的RF功率为10 dBm,在植入位置产生0.0082 mW∙cm-2

7、 给药器件

给药系统能够以最佳的疗效和药代动力将治疗剂转移到靶位[11]。该系统可以执行与给药有关的多种功能,并能实时调整药物释放动力,以达到所需的浓度和在人体的扩散速率。一些电子元件和材料已经显示出支持药物输送的潜力,并能提高患者的依从性、适应性和药物安全性[146]。关于被动[147]和主动[148]药物释放机制已有相关报道。主动系统比被动系统更加商业化,被动系统的药物浓度低、驱动力小,需要复杂的系统包装[149]。目前,大多数主动系统都是无线控制的,允许患者自主控制药物释放时间,并允许通过对器件进行无线编程来定制给药方案[150‒153]。

药物释放机制的无线控制可以开辟新的治疗领域。在这种情况下,一些无线控制的药物输送平台已经显示出治疗与激素失衡、恶性肿瘤等相关的大量疾病的潜力[11]。最近微加工技术的创新使电子器件、材料、微处理器控制器、天线和RF电路在紧凑的器件空间内得以集成和封装[146]。所有这些部件都与用于储存药物的小储层装配在一起。因此,这种器件构造需要紧凑的天线设计,以便为储层和其他电子元件的集成留出足够的空间。随着柔性生物相容材料的出现,制造能够适应器件形状的共形天线已经成为可能[154]。

器件和外部单元之间的双向通信链路可以共享关于电池电压状态、药物扩散速率和释放时间的信息[154]。因此,高效的天线设计对于实现人体通信信道的可靠和稳健的无线链接是不可或缺的。最近的一项研究展示了一种基于生物可吸收性聚酸酐储药层的给药器件,该器件可以通过感应链路进行无线供电[图8(a)] [12]。RF功率收集单元由一个镁(Mg)RF线圈、一个硅纳米膜(SiNM)和一个平行板电容器[图8(b)]组成。线圈的质量因数约为15,可以产生足够的电压供长距离运行。该器件由产生于外部传输线圈(直径80 mm,三圈,用直径1.6 mm的铜线绕制)的5 MHz信号来驱动。该器件中采集器电路的反射系数如图8(c)所示。通过精心挑选低频信号,实现生物组织中小范围寄生吸收[155]。该器件接收到的信号通过与储层连接的一对Mg电极产生电流。因此,电流引发了密封储层的金属栅结构的电化学溶解。这个过程会打开储层,使药物从器件中释放。对该系统进行升级,以演示药物从该器件的多个储层释放[图8(d)]。该器件的每个储层都有自己的集成动力收集单元,并以三种不同的频率(5.14 MHz、9.92 MHz和14.78 MHz)进行共振。多频采集器的谐振通过匹配电容器与独立线圈(19 pF、23 pF和85 pF)实现[图8(e)]。

图8 无线控制给药器件。(a)具有电触发机制的无线可植入生物可吸收给药系统示意图[12]。(b)该器件的无线功率收集器由一个带有Mg线圈、SiNM二极管和Mg/SiO2/Mg电容器的RF能量采集器组成[12]。(c)采集器模拟散射参数与实测散射参数(S11)的比较。采集器的谐振频率约为5 MHz [12]。(d)具有三个独立储层和无线刺激器件的系统示意图[12]。(e)比较以不同频率工作的三个采集器的模拟电压和实验测量电压,以证明最小的串扰[12]。(f)在PCB上制作的集成部件。(g)当给药贴片贴在关节上时,智能手机界面的演示。(h)由柔性电路板、给药电极、NFC天线和铜线组成的贴片示意图。天线是用PI涂层包裹在器件中的。PBTPA:聚丁二硫醇1,3,5-三烯丙基-1,3,5-三嗪-2,4,6 (1H, 3H, 5H)-三酮戊酸酐;PLGA:聚乳酸羟基乙酸。(f)经Springer Nature许可,转载自参考文献[156],©2006;(g)、(h)经Springer Nature许可,转载自参考文献[157],©2020。

另一项研究报道了一种基于微芯片的多储层器件,用于在人体内输送多肽[156]。每个微芯片的尺寸为15 mm ×15 mm × 1 mm,包含100个可单独寻址的300 nL储层。在器件周围形成一个环形天线,通过电热溶解过程接收目标储层和药物释放的信息[图8(f)]。

透皮给药器件可以自行给药,并使药物浓度水平波动最小[157‒158]。这类器件的贴片上通常包含一组微针,每一根微针都与贴片下的药物储层相连。将贴片贴在皮肤上,然后按压,使药物进入体循环[159]。参考文献[157]中提出了一种有趣的方法,用于无线控制药物输送。该贴片无电池,包括柔性电路板、温度传感器和NFC模块[图8(g)]。局部皮肤温度通过NFC天线传输到具有NFC功能的智能手机上[图8(h)]。人体皮肤的温度分布有助于控制药物的释放量。研究还表明,在14.2 MHz和14.6 MHz之间的频率范围内,贴片可以在不同的弯曲条件下从用户的智能手机上采集电能。贴片顺利运行所需的电压对应于贴片和智能手机之间小于10 mm的距离。

上述给药器件并不是严格意义上的生物电子器件,很少有研究讨论将潜在的有机[160‒161]和导电[162‒163]材料用于生物电子给药。这些研究主要集中在新型材料及其与身体组织的接口上。

拓宽这一领域的研究范围可以引领未来无线生物电子器件的发展,这些器件不仅可以提供个性化的药物,还可以增强体内药物吸收。

8、 生理监测

生物电子器件的优势推动了其在连续生理监测和传感方面的应用,最近柔性和弹性材料的发展,使得生物电子器件与人体的接口变得更隐蔽和便捷[8,119,164‒166]。临床上从心率[167]、呼吸率[168]、脉搏[169]、压力[170]、脑血流动力学监测[165]、汗液[171]和血压[168]等方面检索分析了大量生理数据,用于诊断和治疗。无线技术通过在体外为数据采集提供支持和灵活性,刺激了与生理感应有关的研究和商业活动[172]。该技术还有助于开发一种接口,从传感器获取数据,并将数据无线传播到终端用户的笔记本电脑、平板电脑或手机上,以图形方式解释生理信息。

本文已经提出了多种协议,如蓝牙[165,169‒171,173‒174]和NFC [28],以调节生理监测中的电源和数据通信。参考文献[28]介绍了支持NFC的生理传感的演示。本研究利用有NFC功能的服装,并排除了在传感器节点中使用电池的要求。使用导电线在纺织材料上绣出多个电感图案,作为物理分离位置之间的继电器。NFC天线(读取器)被放置在靠近感应器图案的地方,由于在13.56 MHz下运行的时变磁场,使在继电器中感应出电流。集中在继电器终端的电流充当无线供电和连接的资源。一般认为取读器的输出功率恒定在200 mW,而4 mW的功率消耗则通过测量跑步运动员的应变和温度,在传感器节点上估算得出。

睡眠是一项重要的生理功能,任何一种睡眠周期或模式的缺陷都会影响大脑功能、心律和自主神经系统[175]。近年来,一种有趣的无线生物电子技术已经被应用于实时家庭睡眠监测[164]。该系统提供柔性和共形接口,并记录皮肤电反应(GSR,一种与皮肤电导和交感神经系统相关的生理信号)[176]。该系统通过使用基于纳米材料的电极连接到皮肤上,并包含轻质的低功率电子器件(图9)。使用生物电子器件监测压力的类似研究已经被报道[170,177]。

图9 基于无线柔性生物电子器件的家庭睡眠监测系统[164]。(a)睡觉时贴在人手腕上的贴片。(b)在柔性材料上制造的生物电子系统(左)和在硅胶带上的石墨烯电极(右)。(c)生物电子器件中的集成部件。(d)关于数据流和睡眠信号分级的步骤。

9、 脑刺激器

神经科学研究的首要目标是深入了解大脑功能,以克服与复杂和大部分侵入性的神经系统治疗相关的艰巨挑战[30,82,178‒181]。神经科学界已经研究了与神经化学传感[157]、细胞特异性神经元活动[181]、组织血氧测定[182]、神经动力学记录[181,183]、周围神经的神经调节[184]以及神经退行性疾病根源的确定[178]有关的神经功能。最近,研究人员开始关注通过采用灵活的生物相容性材料与神经电路进行长期和便捷的接口,来设计可植入的生物电子产品[185‒187]。此外,文献中还讨论了生物可吸收材料用于可持续非药物性神经再生治疗[155]。

药理学和光遗传学研究的共同努力,阐明了神经回路与病理脑功能的相互作用[184,188]。利用硅材料[189‒190]和CMOS技术[191‒192]实现了广泛的多功能神经探针和微电极,这些器件在插入后可以记录脑电活动。尽管神经探针和微电极显示出巨大的潜力,但在插入时会引起脑组织炎症和出血[192]。此外,在光遗传学中,系留光纤实现了将光传递到神经元,以记录荧光信号[181]。然而,光导纤维可能减少受试者的运动,限制了实验范式的范围。为了克服上述缺陷,研究人员积极考虑将无线技术作为一种替代方案[178,187‒188,193‒194]。

外围神经调控通过将无线闭环系统用于基于光遗传学的感应和刺激来实现[图10(a)] [29]。该系统配备有无线控制模块,包括一个集成低功率RF嵌入式微控制器。此外,该系统通过一个工作频率为13.56 MHz的三线圈系统进行感应供电,并植入大鼠体内以治疗膀胱过度活动症[图10(b)]。发射器一侧的无线部分由一个RFID驱动器、一个阻抗匹配电路和一个主线圈构成。相反,无线控制模块中的负载线圈充当接收器[图10(c)]。当接收线圈在13.56 MHz的设定频率下进行阻抗匹配时,发射线圈开始产生WPT效应。实验证明,在外部线圈提供4 W功率的条件下,该系统可在30 s内完成无线充电。该系统还能够通过蓝牙连接向外部iPhone操作系统(iOS)器件传输数据。

图10 用于无线光遗传学调控的全植入式的柔性光电系统。(a)该系统包括光电刺激和传感(OESS)模块、低模量、可拉伸应变片(SG)、集成无机发光二极管(ILED)、无线控制器和电源(WCP),以及蓝牙模块和用于WPT到光电系统的感应电源线圈。(b)带有集成部件的系统制造原型(i);系统植入示意图(ii)。(c)植入式WCP模块的示意图。μ-ILED:微型无机发光二极管。(a)~(c)经Springer Nature许可,转载自文献[29],©2019。

尽管基于(发射和植入)线圈的感应链路被广泛地用于光遗传学器件,但这些感应链路仍受到了一些限制。当发射线圈与植入线圈对齐并耦合时,其感应功率传输是最大的。然而,移动的受试者会降低耦合效率,因此通常会采用跟踪算法以保持无线通信链路的性能。有研究提出了一种基于谐振RF腔体的WPT发射器,用于小型化光遗传器件[180]。RF腔体(直径21 cm,高15 cm)由铝制造而成,通过利用测试对象的介电特性和身体维度,可以以1.5 GHz的频率将电磁能耦合到植入物[图11(a)]。植入物的尺寸为10~25 mm3,包括一个功率接收线圈(直径1.6 mm)、电路和一个发光二极管(LED)。这个植入物的整体质量只有20~50 mg,易于植入[图11(b)]。一个六角形表面晶格(直径2.5 cm)被用来将电磁能耦合到小鼠组织。在晶格下面,放置一个圆柱形波导管,向小鼠发射圆极化电磁波。本文所提出的方法可以很容易地将电磁能集中在整个晶格区域,而且圆极化可使耦合损失降到最低。此外,由于WPT的效率与围栏中的小鼠位置无关,因此不需要跟踪算法。图11(c)显示了无线植入物及其尺寸对比。

图11 基于RF腔体的光遗传学器件。(a)谐振腔体上的外壳示意图。RF信号发生器通过移相器和功率分配器与腔体的两个端口相连。(b)植入物的集成部件示意图。(c)制备的原型及其尺寸比较。ChR2:光敏通道2。(a)~(c)经Springer Nature许可,转载自参考文献[180],©2015。

在可编程植入光电器件的多模态操作的背景下,有源组件可以更有效地实现用户在功率调节、位置和与角度无关的无线功率采集方面的实时自主性。磁共振耦合已经证明了其在工作频率为13.56 MHz的有源光电器件中进行RF功率采集的潜力[30]。该器件包括几个操作部件,如接收天线、单波整流器、集成匹配电容器、线性稳压器和具有低正向电压阈值的肖特基二极管,用于整流从外部天线接收的交流(AC)信号。外部双环初级天线具有一个标准的实验外壳周长(30 cm × 30 cm)。本文还展示了使用正交极化磁共振天线在角度相关场景中的功率传输。该天线可以促进对受试者的功率传输能力,而且不用考虑受试者在试验围栏中的方向。

有报道展示了一种有趣的无线编程电子系统的设计,用于长期的非药物治疗和神经再生治疗[155]。整个系统和相关部件采用各种各样的生物相容性和生物可吸收材料制造而成。无线刺激器包括一个RF功率收集器,该收集器包含一个由双线圈(线圈有34圈)配置的环形天线。这个天线由约50 µm厚的Mg制成,与聚(乳酸羟基乙酸)(PLGA)介电层一起使用[图12(a)、(b)]。为了整流接收到的RF功率,在电路上制作了一个二极管和一个Mg/SiO2/Mg电容(1050 pF)。在功率约为5 MHz时,可实现电子植入系统和发射天线之间的磁耦合[图12(c)]。采集器在离发射天线80 mm的耦合距离上产生1 V约11 Vpp的单相输出[图12(d)]。图12(e)中突出显示了生物可吸收无线刺激器在一段时间内的溶解情况。

图12 用于神经再生刺激的生物电子器件。(a)设计示意图。该器件包括一个由Mg线圈制成的无线电功率收集器、由320 nm厚的SiNM和300 nm厚的Mg电极制成的二极管,以及PLGA衬底上的Mg/SiO2/Mg电容器。(b)带接收天线的器件集成图。(c)刺激器的谐振频率。(d)当AC(正弦波)被施加到传输线圈时的输出波形(红色和蓝色分别代表刺激器和发射器)。(e)在37 ℃下浸泡在磷酸盐缓冲液(pH = 7.4)中的生物可吸收无线刺激器的溶解图像。(a)~(e)经Springer Nature许可,转载自参考文献[155],©2018。

用于无线神经刺激的小型化生物电子器件的设计一直是神经科学研究的主要驱动力。上述大多数用于神经刺激的生物电子器件在低频率下工作,并使用电感线圈系统进行无线供电。虽然磁场在身体组织中传播时衰减很小[195],但低工作频率的线圈尺寸会对整个植入物尺寸的小型化造成限制。最近,人们探索了磁电材料为微型神经刺激器提供无线供电,该刺激器的工作频率范围很广[图13(a)、(b)] [196]。这些材料能够将磁场转换为电压,且无需天线和整流器。由于磁偶极子的重新排列,磁电材料薄层在与外加磁场相互作用时会产生应变。当产生电压和打开LED进行光遗传学刺激时,这些材料也会对压电层产生应变[图13(c)]。

图13 (a)手指上的器件示意图;图例尺寸:5 mm。(b)自由移动的小鼠身上的器件示意图。插图显示了从磁致伸缩层到压电层的应变转移,以产生跨膜电压。(c)磁致伸缩层的谐振反应,表示在171 KHz的声共振下产生的最大电压。插图显示了制成的刺激器。右侧插图显示使用COMSOL计算出的应力。(d)系统中集成部件的示意图。(e)在指尖上制造的器件(厚0.7 mm、宽3.8 mm、长6 mm)(i)和该器件与LED的可伸展连接(ii)。PVDF:聚偏二氟乙烯;PZT:锆钛酸铅。(a)~(c)经Elsevier许可,转载自参考文献[196],©2020;(d)、(e)经Springer Nature许可,转载自参考文献[197],©2015。

集成于无线光遗传器件的薄型可拉伸天线已经显示出宽带RF功率采集的潜力[图13(d)] [197]。该器件实现了对脊髓和周围神经系统的光遗传学调制。为了使该器件小型化,用紧凑的Ti/Au蛇形电气互连制造一个天线,并在2.35 GHz的频率上产生谐振,工作带宽超过200 MHz。整个电路由聚酰亚胺(PI)和低模量有机硅弹性体封装[图13(e)]。该器件以大约2 W的RF功率被激活,通过4个外部天线的配置进行传输。RF采集单元包括整流器、电压倍增器和LED(需要2.7 V电压才能开启),通过蛇形电气互连与可伸缩天线连接。微型肖特基二极管和一个陶瓷片电容集成在整流器内,并与电压倍增器相连。

参考文献[181]提出了一种无线控制的可注射测光探针,用于持续记录神经动态。探针的接收天线利用磁共振与外部主线圈进行无线耦合,由宽100 µm、间距50 µm的7圈双侧铜线圈(质量系数为23.05)制成。该探针的接收天线以13.56 MHz的频率进行谐振,并与围绕实验围栏折叠的外部天线建立了无线通信联系。利用光流体器件将光遗传学和药理学结合,改善了神经化学信号的感应,并克服了与传统物理局限有关的限制。这些器件在插入大脑时是不方便的,而且不适合需要受试者运动的实验范例。最近,有研究者用柔性无线微流控系统展示了可编程药理学和光遗传学的概念,该系统包含一个磁环天线,可与外部主天线建立WPT链接,从而使整个系统无需电池和小型化[198]。一个灵活的印刷电路板(PCB)平台被用于组装一个带有整流器和电容器的天线,以将谐振频率调到13.56 MHz。采集的RF功率为11~115 mW。

10、 结论

对于消费者和临床医疗器件来说,生物电子学正变得越来越重要;由于在各种疾病治疗方面的多功能性,生物电子学在神经科学领域引起了巨大的兴趣。本研究报道了无线控制的生物电子学的最新进展,以及目前在临床上的应用;阐明了使用无线技术在没有任何电线或导管的情况下对器件进行实时生理传感和动态控制的开创性优势。

本文重点研究了天线系统和相关的电子器件,以建立可靠和有效的电力传输能力,进而实现无电池和小型化器件。本文强调了高效的天线设计和无线通信协议的重要性,以克服与通过身体组织以最小损耗将数据传输到外部接收器有关的挑战。讨论了天线的关键特征,如尺寸、工作频率、辐射特性和体内测量。除了天线之外,还强调了其他电子元件,如整流器、功率分配器和稳压器,以解释整个无线操作过程。本文的结论是:无线技术可以有效地减少生物电子器件的尺寸,使器件无需电池,并可以提供有前途的替代性供电或充电方法。本文还指出,线圈形天线系统主要用于生物电子学,因为它们设计紧凑,能够通过磁场与外部单元耦合,使通过身体组织的损耗最小。

尽管生物电子学有潜力应对医疗保健方面的新挑战,但需要与柔性和生物相容性材料、低功率电子学、天线、信号处理等领域相互配合、共同发展,以扩大其应用范围。本研究认为,无线生物电子学主要被用于脑部植入,很少有研究讨论无线生物电子学在给药、GI监测和心血管治疗方面的潜在用途。因此,仍有许多利用无线控制技术来增强生物电能力的开放机会,以发展针对不同器官的创新治疗方案。本文是在基于自然语言处理(NLP)调查的协助下完成的,详情见附录A。

参考文献

[1]

Mahmood M, Kwon S, Berkmen GK, Kim YS, Scorr L, Jinnah HA, et al. Soft nanomembrane sensors and flexible hybrid bioelectronics for wireless quantification of blepharospasm. IEEE Trans Biomed Eng 2020;67(11): 3094–100.

[2]

Kwon YT, Kim YS, Kwon S, Mahmood M, Lim HR, Park SW, et al. All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene formultimodal human–machine interfaces. Nat Commun 2020;11(1): 3450.

[3]

Lee H, Lee Y, Song C, Cho HR, Ghaffari R, Choi TK, et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat Commun 2015;6(1):10059.

[4]

Liu Y, Yang T, Zhang Y, Qu G, Wei S, Liu Z, et al. Ultrastretchable and wireless bioelectronics based on all-hydrogel microfluidics. Adv Mater 2019;31(39): e1902783.

[5]

Shi C, Costa T, Elloian J, Zhang Y, Shepard KL. A 0.065-mm3 monolithicallyintegrated ultrasonic wireless sensing mote for real-time physiological temperature monitoring. IEEE Trans Biomed Circ Sci 2020;14(3):412–24.

[6]

Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 2020;32(15):e1901924.

[7]

Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 2016;28(22):4203–18.

[8]

Yao G, Yin C, Wang Q, Zhang T, Chen S, Lu C, et al. Flexible bioelectronics for physiological signals sensing and disease treatment. J Materiomics 2020;6(2): 397–413.

[9]

Rangriz F, Khaleghi A, Balasingham I. Wireless link for micro-scale biomedical implants using magnetoelectric antenna. In: Proceedings of 2020 14th European Conference on Antennas and Propagation (EuCAP); 2020 Mar 15– 20; Copenhagen, Denmark. New York: IEEE; 2020. p. 1–4.

[10]

Taalla RV, Arefin MS, Kaynak A, Kouzani AZ. A review on miniaturized ultrasonic wireless power transfer to implantable medical devices. IEEE Access 2019;7:2092–106.

[11]

Khan AN, Ermakov A, Sukhorukov G, Hao Y. Radio frequency controlled wireless drug delivery devices. Appl Phys Rev 2019;6(4):041301.

[12]

Koo J, Kim SB, Choi YS, Xie Z, Bandodkar AJ, Khalifeh J, et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci Adv 2020;6(35): eabb1093.

[13]

Lee CY, Hsieh PH, Yang CH. A standard-cell-design-flow compatible energyrecycling logic with 70% energy saving. IEEE Trans Circuits I: Regular Papers 2016;63(1):70–9.

[14]

Chandrakasan AP, Verma N, Daly DC. Ultralow-power electronics for biomedical applications. Annu Rev Biomed Eng 2008;10(1):247–74.

[15]

Hall PS, Hao Y. Antennas and propagation for body centric communications. In: Proceedings of 2006 First European Conference on Antennas and Propagation; 2006 Nov 6–10; Nice, France. New York: IEEE; 2006. p. 1–7.

[16]

Hao Y, Alomainy A, Zhao Y. Antenna design and propagation measurements and modelling for UWB wireless BAN. In: Allen B, Dohler M, Okon EE, Dphil WQM, Brown AK, Edwards DJ, editors. Ultra-wideband antennas and propagation: for communications, radar and imaging. Wiley Online Library; 2006. p. 331–59.

[17]

Hall PS, Hao Y. Antennas and propagation for body-centric wireless communications. 2nd ed. Boston: Artech house; 2012.

[18]

Steiger C, Abramson A, Nadeau P, Chandrakasan AP, Langer R, Traverso G. Ingestible electronics for diagnostics and therapy. Nat Rev Mater 2019;4(2): 83–98.

[19]

Alomainy A, Hao Y, Pasveer F. Modelling and characterisation of a compact sensor antenna for healthcare applications. In: Leonhardt S, Falck T, Mähönen P, editors. Proceedings of 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007); 2007 Mar 26–28; Aachen, Germany. Berlin: Springer; 2007. p. 3–8.

[20]

Kaim V, Kanaujia BK, Kumar S, Choi HC, Kim KW, Rambabu K. Ultra-miniature circularly polarized CPW-Fed implantable antenna design and its validation for biotelemetry applications. Sci Rep 2020;10(1):6795.

[21]

Nikolayev D, Zhadobov M, Joseph W, Martens L, Sauleau R. Radiation performance of highly miniaturized implantable devices. In: Proceedings of 2019 49th European Microwave Conference (EuMC); 2019 Sep 29–Oct 4; Paris, France. New York: IEEE; 2019. p. 216–9.

[22]

Wen D, Hao Y, Wang H, Zhou H. Design of a compact and low-profile wearable MIMO antenna for wireless personal area networks. In: Proceedings of 12th European Conferece on Antennas and Propagation (EuCAP 2018); 2018 Apr 9–13; London, UK. Brusselsp: EurAAP; 2018. p. 1–5.

[23]

Miah MS, Khan AN, Icheln C, Haneda K, Takizawa KI. Antenna system design for improved wireless capsule endoscope links at 433 MHz. IEEE Trans Antenn Propag 2019;67(4):2687–99.

[24]

Wen D, Hao Y, Munoz MO, Wang H, Zhou H. A compact and lowprofile MIMO antenna using a miniature circular high-impedance surface for wearable applications. IEEE Trans Antenn Propag 2018;66(1):96–104.

[25]

Bhattacharjee S, Maity S, Metya SK, Bhunia CT. Performance enhancement of implantable medical antenna using differential feed technique. Eng Sci Technol 2016;19(1):642–50.

[26]

Machnoor M, Paknahad J, Stang J, Lazzi G. Wireless telemetry system with independent power and data frequency resonance. IEEE Antennas Wirel Propag Lett 2020;19(4):690–4.

[27]

Islam MN, Yuce MR. Review of medical implant communication system (MICS) band and network. ICT Express 2016;2(4):188–94.

[28]

Lin R, Kim HJ, Achavananthadith S, Kurt SA, Tan SCC, Yao H, et al. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat Commun 2020;11(1):444.

[29]

Mickle AD, Won SM, Noh KN, Yoon J, Meacham KW, Xue Y, et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 2019;565(7739):361–5.

[30]

Gutruf P, Krishnamurthi V, Vázquez-Guardado A, Xie Z, Banks A, Su CJ, et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat Electron 2018;1(12):652–60.

[31]

Fan X, Shangguan L, Howard R, Zhang Y, Peng Y, Xiong J, et al. Towards flexible wireless charging for medical implants using distributed antenna system. In: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking; 2020 Sep 21–25; London, UK. New York: Association for Computing Machinery; 2020. p. 1–15.

[32]

Zhang Y, Huo Z, Wang X, Han X, Wu W, Wan B, et al. High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable multifunction electronics. Nat Commun 2020;11(1):5629.

[33]

Xu S, Hansen BJ, Wang ZL. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat Commun 2010;1(1):93.

[34]

Dagdeviren C, Yang BD, Su Y, Tran PL, Joe P, Anderson E, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci USA 2014;111(5):1927–32.

[35]

Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008;451(7175):163–7.

[36]

Mercier PP, Lysaght AC, Bandyopadhyay S, Chandrakasan AP, Stankovic KM. Energy extraction from the biologic battery in the inner ear. Nat Biotechnol 2012;30(12):1240–3.

[37]

Ma A, Poon ASY. Midfield wireless power transfer for bioelectronics. IEEE Circuits Syst Mag 2015;15(2):54–60.

[38]

Dautov K, Hashmi M, Nauryzbayev G, Nasimuddin N. Recent advancements in defected ground structure-based near-field wireless power transfer systems. IEEE Access 2020;8:81298–309.

[39]

Miller L, Farajidavar A, Vegesna A. Use of bioelectronics in the gastrointestinal tract. Cold Spring Harb Perspect Med 2019;9(9):a034165.

[40]

Kong YL, Zou X, McCandler CA, Kirtane AR, Ning S, Zhou J, et al. 3D-printed gastric resident electronics. Adv Mater Technol 2019;4(3):1800490.

[41]

Mimee M, Nadeau P, Hayward A, Carim S, Flanagan S, Jerger L, et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 2018;360(6391):915–8.

[42]

Liu X, Steiger C, Lin S, Parada GA, Liu J, Chan HF, et al. Ingestible hydrogel device. Nat Commun 2019;10(1):1–10.

[43]

Dey N, Ashour AS, Shi F, Sherratt RS. Wireless capsule gastrointestinal endoscopy: direction-of-arrival estimation based localization survey. IEEE Rev Biomed Eng 2017;10:2–11.

[44]

Faerber J, Gregson R, Clutton RE, Khan SR, Cochran S, Desmulliez MPY, et al. In vivo characterization of a wireless telemetry module for a capsule endoscopy system utilizing a conformal antenna. IEEE Trans Biomed Circ Sci 2018;12(1): 95–105.

[45]

Wang J, Leach M, Lim EG, Wang Z, Pei R, Huang Y. An implantable and conformal antenna for wireless capsule endoscopy. IEEE Antennas Wirel Propag Lett 2018;17(7):1153–7.

[46]

Zhu C, Hong L, Yang H, Sengupta K. Ingestible bioelectronics: a packaged, biomolecular, fluorescence-based sensor array with ultralow-power wireless interface. In: Proceedings of 2019 IEEE MTT-S International Microwave Symposium (IMS); 2019 Jun 2–7; Boston, MA, USA. New York: IEEE; 2019. p. 212–5.

[47]

Muhammad K, Khan S, Kumar N, Del Ser J, Mirjalili S. Vision-based personalized wireless capsule endoscopy for smart healthcare: taxonomy, literature review, opportunities and challenges. Future Gener Comput Syst 2020;113:266–80.

[48]

Alsunaydih FN, Arefin MS, Redoute JM, Yuce MR. A navigation and pressure monitoring system toward autonomous wireless capsule endoscopy. IEEE Sens J 2020;20(14):8098–107.

[49]

Kalantar-zadeh K, Ha N, Ou JZ, Berean KJ. Ingestible sensors. ACS Sens 2017;2(4): 468–83.

[50]

Bettinger CJ. Advances in materials and structures for ingestible electromechanical medical devices. Angew Chem Int Ed Engl 2018;57(52): 16946–58.

[51]

Cao H, Rao S, Tang SJ, Tibbals HF, Spechler S, Chiao JC. Batteryless implantable dual-sensor capsule for esophageal reflux monitoring. Gastrointest Endosc 2013;77(4):649–53.

[52]

Shao G, Guo YX. Hybrid wireless positioning and charging with switched field helmholtz coils for wireless capsule endoscopy. IEEE Trans Microw Theory Technol 2020;68(3):904–13.

[53]

Leung BHK, Poon CCY, Zhang R, Zheng Y, Chan CKW, Chiu PWY, et al. A therapeutic wireless capsule for treatment of gastrointestinal haemorrhage by balloon tamponade effect. IEEE Trans Biomed Eng 2017;64(5):1106–14.

[54]

Sarestoniemi M, Pomalaza-Raez C, Kissi C, Berg M, Hamalainen M, Iinatti J. WBAN channel characteristics between capsule endoscope and receiving directive UWB on-body antennas. IEEE Access 2020;8:55953–68.

[55]

Lo YK, Wang PM, Dubrovsky G, Wu MD, Chan M, Dunn J, et al. A wireless implant for gastrointestinal motility disorders. Micromachines 2018;9(1):17.

[56]

Biswas B, Karmakar A, Chandra V. Miniaturised wideband ingestible antenna for wireless capsule endoscopy. IET Microw Antennas Propag 2020;14(4): 293–301.

[57]

Neebha TM, Andrushia AD, Durga S. A state-of-art review on antenna designs for ingestible application. Electromagn Biol Med 2020;39(4):387–402.

[58]

Beardslee LA, Banis GE, Chu S, Liu S, Chapin AA, Stine JM, et al. Ingestible sensors and sensing systems for minimally invasive diagnosis and monitoring: the next frontier in minimally invasive screening. ACS Sens 2020;5(4):891–910.

[59]

Lai J, Wang J, Zhao K, Jiang H, Chen L, Wu Z, et al. Design of a dual-polarized omnidirectional dielectric resonator antenna for capsule endoscopy system. IEEE Access 2021;9:14779–86.

[60]

Basir A, Zada M, Cho Y, Yoo H. A dual-circular-polarized endoscopic antenna with wideband characteristics and wireless biotelemetric link characterization. IEEE Trans Antenn Propag 2020;68(10):6953–63.

[61]

Duan Z, Xu H, Gao SS, Geyi W. A circularly polarized omnidirectional antenna for wireless capsule endoscope system. IEEE Trans Antenn Propag 2021;69(4): 1896–907.

[62]

Bao Z, Guo YX. Novel miniaturized antenna with a highly tunable complex input impedance for capsules. IEEE Trans Antenn Propag 2021;69(6): 3106–14.

[63]

Christoe MJ, Phaoseree N, Han J, Michael A, Atakaramians S, Kalantar-Zadeh K. Meandering pattern 433 MHz antennas for ingestible capsules. IEEE Access 2021;9:91874–82.

[64]

Kim K, Yun S, Lee S, Nam S, Yoon YJ, Cheon C. A design of a high-speed and highefficiency capsule endoscopy system. IEEE Trans Biomed Eng 2012;59(4): 1005–11.

[65]

Barbi M, Garcia-Pardo C, Nevarez A, Pons Beltran V, Cardona N. UWB RSSbased localization for capsule endoscopy using a multilayer phantom and in vivo measurements. IEEE Trans Antenn Propag 2019;67(8):5035–43.

[66]

Bettinger CJ. Materials advances for next-generation ingestible electronic medical devices. Trends Biotechnol 2015;33(10):575–85.

[67]

Hwang GT, Im D, Lee SE, Lee J, Koo M, Park SY, et al. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano 2013;7(5):4545–53.

[68]

Arefin MS, Redoute JM, Yuce MR. Integration of low-power ASIC and MEMS sensors for monitoring gastrointestinal tract using a wireless capsule system. IEEE J Biomed Health Inform 2018;22(1):87–97.

[69]

Nadeau P, El-Damak D, Glettig D, Kong YL, Mo S, Cleveland C, et al. Prolonged energy harvesting for ingestible devices. Nat Biomed Eng 2017;1(3): 1–8.

[70]

Xu F, Zhang H, Jin L, Li Y, Li J, Gan G, et al. Controllably degradable transient electronic antennas based on watersoluble PVA/TiO2 films. J Mater Sci 2018;53(4):2638–47.

[71]

Inui T, Koga H, Nogi M, Komoda N, Suganuma K. A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv Mater 2015;27(6):1112–6.

[72]

Song M, Ding M, Tiurin E, Xu K, Allebes E, Singh G, et al. A millimeter-scale crystal-less mics transceiver for insertable smart pills. IEEE Trans Biomed Circ Sci 2020;14(6):1218–29.

[73]

Lei W, Guo YX. Design of a dual-polarized wideband conformal loop antenna for capsule endoscopy systems. IEEE Trans Antenn Propag 2018;66(11): 5706–15.

[74]

Basar MR, Ahmad MY, Cho J, Ibrahim F. An improved resonant wireless power transfer system with optimum coil configuration for capsule endoscopy. Sens Actuator A Phys 2016;249:207–16.

[75]

Abid A, O’Brien JM, Bensel T, Cleveland C, Booth L, Smith BR, et al. Wireless power transfer to millimeter-sized gastrointestinal electronics validated in a swine model. Sci Rep 2017;7(1):46745.

[76]

Mills JO, Jalil A, Stanga PE. Electronic retinal implants and artificial vision: journey and present. Eye 2017;31(10):1383–98.

[77]

Bahrami S, Moloudian G, Miri-Rostami SR, Bjorninen T. Compact microstrip antennas with enhanced bandwidth for the implanted and external subsystems of a wireless retinal prosthesis. IEEE Trans Antenn Propag 2021;69(5):2969–74.

[78]

Jeong J, Bae SH, Min KS, Seo JM, Chung H, KIM SJ. A miniaturized, eyeconformable, and long-term reliable retinal prosthesis using monolithic fabrication of liquid crystal polymer (LCP). IEEE Trans Biomed Eng 2015;62(3): 982–9.

[79]

Ahnood A, Cheriton R, Bruneau A, Belcourt JA, Ndabakuranye JP, Lemaire W, et al. Laser driven miniature diamond implant for wireless retinal prostheses. Adv Biosyst 2020;4(11):e2000055.

[80]

Weiland JD, Liu W, Humayun MS. Retinal prosthesis. Annu Rev Biomed Eng 2005;7(1):361–401.

[81]

Ng DC, Bai S, Yang J, Tran N, Skafidas E. Wireless technologies for closed-loop retinal prostheses. J Neural Eng 2009;6(6):065004.

[82]

Liu H, Zhao T, Jiang W, Jia R, Niu D, Qiu G, et al. Flexible battery-less bioelectronic implants: wireless powering and manipulation by near-infrared light. Adv Funct Mater 2015;25(45):7071–9.

[83]

Fallegger F, Schiavone G, Lacour SP. Conformable hybrid systems for implantable bioelectronic interfaces. Adv Mater 2020;32(15):e1903904.

[84]

Theogarajan LS. A low-power fully implantable 15-channel retinal stimulator chip. IEEE J Solid-Stat Circ 2008;43(10):2322–37.

[85]

Shire DB, Kelly SK, Chen J, Doyle P, Gingerich MD, Cogan SF, et al. Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans Biomed Eng 2009;56(10):2502–11.

[86]

Yang Z, Liu W, Basham E. Inductor modeling in wireless links for implantable electronics. IEEE Trans Magn 2007;43(10):3851–60.

[87]

Wu L, Yang Z, Basham E, Liu W. An efficient wireless power link for high voltage retinal implant. In: Proceedings of 2008 IEEE Biomedical Circuits and Systems Conference; 2008 Nov 20–22; Baltimore, MD, USA. New York: IEEE; 2008. p. 101–4.

[88]

Walter P, Kisva´ rday ZF, Görtz M, Alteheld N, Rossler G, Stieglitz T, et al. Cortical activation via an implanted wireless retinal prosthesis. Invest Ophthalmol Vis Sci 2005;46(5):1780–5.

[89]

Bloch E, Luo Y, da Cruz L. Advances in retinal prosthesis systems. Ther Adv Ophthalmol 2019;11:251584141881750.

[90]

Kaim V, Kanaujia BK, Rambabu K. Design of a miniaturised broadband 3 3 mm antenna for intraocular retinal prosthesis application. Electron Lett 2018;54(20):1150–2.

[91]

Gosalia K, Humayun MS, Lazzi G. Impedance matching and implementation of planar space-filling dipoles as intraocular implanted antennas in a retinal prosthesis. IEEE Trans Antenn Propag 2005;53(8):2365–73.

[92]

Soora S, Gosalia K, Humayun MS, Lazzi G. A comparison of two and three dimensional dipole antennas for an implantable retinal prosthesis. IEEE Trans Antenn Propag 2008;56(3):622–9.

[93]

Stronks HC, Dagnelie G. The functional performance of the Argus II retinal prosthesis. Expert Rev Med Devices 2014;11(1):23–30.

[94]

da Cruz L, Coley BF, Dorn J, Merlini F, Filley E, Christopher P, et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol 2013;97(5): 632–6.

[95]

Kelly SK, Shire DB, Chen J, Doyle P, Gingerich MD, Cogan SF, et al. A hermetic wireless subretinal neurostimulator for vision prostheses. IEEE Trans Biomed Eng 2011;58(11):3197–205.

[96]

Paun MA, Paun VA. High-frequency 3-D model for the study of antennas in cochlear implants. IEEE Trans Compon Packaging Manuf Technol 2018;8(7): 1135–40.

[97]

Mehrkian S, Bayat Z, Javanbakht M, Emamdjomeh H, Bakhshi E. Effect of wireless remote microphone application on speech discrimination in noise in children with cochlear implants. Int J Pediatr Otorhinolaryngol 2019;125:192–5.

[98]

Loizou PC. Mimicking the human ear. IEEE Signal Process Mag 1998;15(5): 101–30.

[99]

Agarwal K, Jegadeesan R, Guo YX, Thakor NV. Wireless power transfer strategies for implantable bioelectronics. IEEE Rev Biomed Eng 2017;10:136–61.

[100]

Zeng FG, Rebscher S, Harrison W, Sun X, Feng H. Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 2008;1:115–42.

[101]

Qian XH, Lee YC, Chang JH, Lin ST, Li SH, Wu TC, et al. Design and in vivo verification of a CMOS bone-guided cochlear implant microsystem. IEEE Trans Biomed Eng 2019;66(11):3156–67.

[102]

Hong S, Jeong S, Lee S, Sim B, Kim H, Kim J. Low EMF design of cochlear implant wireless power transfer system using a shielding coil. In: Proceedings of 2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI); 2020 Jul 28–Aug 28; Reno, NV, USA. New York: IEEE; 2020. p. 623–5.

[103]

Buchegger T, Oßberger G, Reisenzahn A, Hochmair E, Stelzer A, Springer A. Ultra-wideband transceivers for cochlear implants. EURASIP J Adv Signal Process 2005;18:3069–75.

[104]

Vorobyov A, Hennemann C, Vasylchenko A, Decotignie JD, Baumgartner J. Folded loop antenna as a promising solution for a cochlear implant. In: Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014); 2014 Apr 6–11; The Hague, Netherlands. New York: IEEE; 2014. p. 1735–8.

[105]

Mattoso R, Novotny AA. Pointwise antennas design in hyperthermia therapy. Appl Math Model 2021;89(1):89–104.

[106]

Chen G, Stang J, Haynes M, Leuthardt E, Moghaddam M. Real-time threedimensional microwave monitoring of interstitial thermal therapy. IEEE Trans Biomed Eng 2018;65(3):528–38.

[107]

Choi WC, Lim S, Yoon YJ. Design of noninvasive hyperthermia system using transmit-array lens antenna configuration. IEEE Antennas Wirel Propag Lett 2016;15:857–60.

[108]

Bucci OM, Crocco L, Scapaticci R, Bellizzi G. On the design of phased arrays for medical applications. Proc IEEE 2016;104(3):633–48.

[109]

Cho YK, Rhim H, Noh S. Radiofrequency ablation versus surgical resection as primary treatment of hepatocellular carcinoma meeting the Milan criteria: a systematic review. J Gastroenterol Hepatol 2011;26(9):1354–60.

[110]

Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002;3(8): 487–97.

[111]

Nguyen PT, Abbosh AM, Crozier S. 3-D focused microwave hyperthermia for breast cancer treatment with experimental validation. IEEE Trans Antenn Propag 2017;65(7):3489–500.

[112]

Yi Y, Chen J, Selvaraj M, Hsiang Y, Takahata K. Wireless hyperthermia stent system for restenosis treatment and testing with swine model. IEEE Trans Biomed Eng 2020;67(4):1097–104.

[113]

Luo Y, Dahmardeh M, Chen X, Takahata K. A resonant-heating stent for wireless endohyperthermia treatment of restenosis. Sens Actuators A Phys 2015;236:323–33.

[114]

Son D, Lee J, Lee DJ, Ghaffari R, Yun S, Kim SJ, et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 2015;9(6):5937–46.

[115]

Luo Y, Chen X, Dahmardeh M, Takahata K. RF-powered stent with integrated circuit breaker for safeguarded wireless hyperthermia treatment. J Microelectromech Syst 2015;24(5):1293–302.

[116]

Cai M, Takahata K, Mirabbasi S. A low-voltage low-power implantable telemonitoring system with application to endo-hyperthermia treatment of in-stent restenosis. In: Proceedings of 2020 18th IEEE International New Circuits and Systems Conference (NEWCAS); 2020 Jun 16–19; Montreal, QC, Canada. New York: IEEE; 2020. p. 331–4.

[117]

Lazarus A. Remote, wireless, ambulatory monitoring of implantable pacemakers, cardioverter defibrillators, and cardiac resynchronization therapy systems: analysis of a worldwide database. Pacing Clin Electrophysiol 2007;30(s1):S2–12.

[118]

Kakria P, Tripathi NK, Kitipawang P. A real-time health monitoring system for remote cardiac patients using smartphone and wearable sensors. Int J Telemed Appl 2015;2015:373474.

[119]

Hong YJ, Jeong H, Cho KW, Lu N, Kim DH. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv Funct Mater 2019;29(19):1808247.

[120]

Alghrairi M, Sulaiman N, Mutashar S. Health care monitoring and treatment for coronary artery diseases: challenges and issues. Sensors 2020;20(15): 4303.

[121]

Lee SP, Ha G, Wright DE, Ma Y, Sen-Gupta E, Haubrich NR, et al. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. NPJ Digit Med 2018;1(1):2.

[122]

Ren H, Jin H, Chen C, Ghayvat H, Chen W. A novel cardiac auscultation monitoring system based on wireless sensing for healthcare. IEEE J Transl Eng Health Med 2018;6:1–12.

[123]

Wang C, Qin Y, Jin H, Kim I, Granados Vergara JD, Dong C, et al. A low power cardiovascular healthcare system with cross-layer optimization from sensing patch to cloud platform. IEEE Trans Biomed Circuits Syst 2019;13(2):314–29.

[124]

Wang TW, Chu HW, Chen WX, Shih YT, Hsu PC, Cheng HM, et al. Singlechannel impedance plethysmography neck patch device for unobtrusive wearable cardiovascular monitoring. IEEE Access 2020;8:184909–19.

[125]

Lin CT, Chang KC, Lin CL, Chiang CC, Lu SW, Chang SS, et al. An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation. IEEE Trans Inf Technol Biomed 2010;14(3):726–33.

[126]

Tseng KC, Lin BS, Liao LD, Wang YT, Wang YL. Development of a wearable mobile electrocardiogram monitoring system by using novel dry foam electrodes. IEEE Syst J 2014;8(3):900–6.

[127]

Huang A, Chen C, Bian K, Duan X, Chen M, Gao H, et al. WE-CARE: an intelligent mobile telecardiology system to enable mHealth applications. IEEE J Biomed Health Inform 2014;18(2):693–702.

[128]

Halperin D, Heydt-Benjamin TS, Ransford B, Clark SS, Defend B, Morgan W, et al. Pacemakers and implantable cardiac defibrillators: software radio attacks and zero-power defenses. In: Proceedings of 2008 IEEE Symposium on Security and Privacy (sp 2008); 2008 May 18–22; Oakland, CA, USA. New York: IEEE; 2008. p. 129–42.

[129]

Lee SY, Su YC, Liang MC, Hong JH, Hsieh CH, Yang CM, et al. A programmable implantable micro-stimulator SOC with wireless telemetry: application in closed-loop endocardial stimulation for cardiac pacemaker. In: Proceedings of 2011 IEEE International Solid-State Circuits Conference; 2011 Feb 20–24; San Francisco, CA, USA. New York: IEEE; 2011. p. 44–5.

[130]

Gutruf P, Yin RT, Lee KB, Ausra J, Brennan JA, Qiao Y, et al. Wireless, batteryfree, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat Commun 2019;10(1):5742.

[131]

Liu C, Jiang C, Song J, Chau KT. An effective sandwiched wireless power transfer system for charging implantable cardiac pacemaker. IEEE Trans Ind Electron 2019;66(5):4108–17.

[132]

Campi T, Cruciani S, Palandrani F, De Santis V, Hirata A, Feliziani M. Wireless power transfer charging system for aimds and pacemakers. IEEE Trans Microw Theory Technol 2016;64(2):633–42.

[133]

Xiao C, Wei K, Cheng D, Liu Y. Wireless charging system considering eddy current in cardiac pacemaker shell: theoretical modeling, experiments, and safety simulations. IEEE Trans Ind Electron 2017;64(5):3978–88.

[134]

Abiri P, Abiri A, Packard RRS, Ding Y, Yousefi A, Ma J, et al. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system. Sci Rep 2017;7(1):6180.

[135]

Xiao C, Cheng D, Wei K. An LCC-C compensated wireless charging system for implantable cardiac pacemakers: theory, experiment, and safety evaluation. IEEE Trans Power Electron 2018;33(6):4894–905.

[136]

Fontana N, Monorchio A, Torrico MOM, Hao Y. A numerical assesment of the effect of MRI surface coils on implanted pacemakers. In: Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation; 2012 Jul 8–14; Chicago, IL, USA. New York: IEEE; 2012. p. 1–2.

[137]

Cruciani S, Campi T, Maradei F, Feliziani M. Numerical simulation of wireless power transfer system to recharge the battery of an implanted cardiac pacemaker. In: Proceedings of 2014 International Symposium on Electromagnetic Compatibility; 2014 Sep 1–4; Gothenburg, Sweden. New York: IEEE; 2014. p. 44–7.

[138]

Vulfin V, Sayfan-Altman S, Ianconescu R. Wireless power transfer for a pacemaker application. J Med Eng Technol 2017;41(4):325–32.

[139]

Asif SM, Iftikhar A, Hansen JW, Khan MS, Ewert DL, Braaten BD. A novel RFpowered wireless pacing via a rectenna-based pacemaker and a wearable transmit-antenna array. IEEE Access 2019;7:1139–48.

[140]

Fujimoto K, James JR. Mobile antenna systems handbook. 3rd ed. Boston: Artech house; 2008.

[141]

Asif SM, Hansen J, Khan MS, Walden SD, Jensen MO, Braaten BD, et al. Design and in vivo test of a batteryless and fully wireless implantable asynchronous pacing system. IEEE Trans Biomed Eng 2016;63(5):1070–81.

[142]

Amundson MD, Von Arx JA, Linder WJ, Rawat P, Mass WR, inventors; Cardiac Pacemakers, Inc., assignee. Circumferential antenna for an implantable medical device. United States patent US 6456256. 2002 Sep 24.

[143]

Cao Z, Chen P, Ma Z, Li S, Gao X, Wu RX, et al. Near-field communication sensors. Sensors 2019;19(18):3947.

[144]

Lee S, Seo W, Ito K, Choi J. Design of an implanted compact antenna for an artificial cardiac pacemaker system. IEICE Electron Express 2011;8(24): 2112–7.

[145]

Furse C. Design an antenna for pacemaker communication. Microw RF 2000;39(3):73.

[146]

Zhang H, Jackson JK, Chiao M. Microfabricated drug delivery devices: design, fabrication, and applications. Adv Funct Mater 2017;27(45):1703606.

[147]

Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 2017;12:7291–309.

[148]

Nafea M, Nawabjan A, Ali MS. A wirelessly-controlled piezoelectric microvalve for regulated drug delivery. Sens Actuators A Phys 2018;279:191–203.

[149]

Ali MS, Takahata K. Wireless microfluidic control with integrated shapememory-alloy actuators operated by field frequency modulation. J Micromech Microeng 2011;21(7):075005.

[150]

Gao W, Li J, Cirillo J, Borgens R, Cho Y. Action at a distance: functional drug delivery using electromagnetic-field-responsive polypyrrole nanowires. Langmuir 2014;30(26):7778–88.

[151]

Yi Y, Kosel J. A remotely operated drug delivery system with dose control. Sens Actuators A Phys 2017;261:177–83.

[152]

Li PY, Givrad TK, Sheybani R, Holschneider DP, Maarek JM, Meng E. A low power, on demand electrothermal valve for wireless drug delivery applications. Lab Chip 2010;10(1):101–10.

[153]

Reddy MA, Pradhan BK, Qureshi D, Pal SK, Pal K. Internet-of-Things-enabled dual-channel iontophoretic drug delivery system for elderly patient medication management. J Med Device 2020;14(1):011104.

[154]

Khan AN, Wen D, Liu Y, Sukhorukov G, Hao Y. An ultrawideband conformal antenna for implantable drug delivery device. In: Proceedings of 2020 14th European Conference on Antennas and Propagation (EuCAP); 2020 Mar 15–20; Copenhagen, Denmark. New York: IEEE; 2020. p. 1–3.

[155]

Koo J, MacEwan MR, Kang SK, Won SM, Stephen M, Gamble P, et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat Med 2018;24(12):1830–6.

[156]

Prescott JH, Lipka S, Baldwin S, Sheppard NF, Maloney JM, Coppeta J, et al. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat Biotechnol 2006;24(4):437–8.

[157]

Liu J, Liu Z, Li X, Zhu L, Xu G, Chen Z, et al. Wireless, battery-free and wearable device for electrically controlled drug delivery: sodium salicylate released from bilayer polypyrrole by near-field communication on smartphone. Biomed Microdevices 2020;22(3):53.

[158]

Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008;26(11): 1261–8.

[159]

Patel D, Chaudhary SA, Parmar B, Bhura N. Transdermal drug delivery system: a review. Pharma Innov 2012;1(4):66–75.

[160]

Löffler S, Melican K, Nilsson KPR, Richter-Dahlfors A. Organic bioelectronics in medicine. J Intern Med 2017;282(1):24–36.

[161]

Simon DT, Gabrielsson EO, Tybrandt K, Berggren M. Organic bioelectronics: bridging the signaling gap between biology and technology. Chem Rev 2016;116(21):13009–41.

[162]

Boehler C, Aqrawe Z, Asplund M. Applications of PEDOT in bioelectronic medicine. Bioelectron Med 2019;2(2):89–99.

[163]

Chapman CAR, Cuttaz EA, Goding JA, Green RA. Actively controlled local drug delivery using conductive polymer-based devices. Appl Phys Lett 2020;116(1): 010501.

[164]

Kim H, Kwon S, Kwon YT, Yeo WH. Soft wireless bioelectronics and differential electrodermal activity for home sleep monitoring. Sensors 2021;21(2):354.

[165]

Rwei AY, Lu W, Wu C, Human K, Suen E, Franklin D, et al. A wireless, skininterfaced biosensor for cerebral hemodynamic monitoring in pediatric care. Proc Natl Acad Sci USA 2020;117(50):31674–84.

[166]

Gao Y, Yu L, Yeo JC, Lim CT. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv Mater 2020;32(15): 1902133.

[167]

Zheng Q, Zhang H, Shi B, Xue X, Liu Z, Jin Y, et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 2016;10(7):6510–8.

[168]

Ma Y, Zheng Q, Liu Y, Shi B, Xue X, Ji W, et al. Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett 2016;16(10):6042–51.

[169]

Ouyang H, Tian J, Sun G, Zou Y, Liu Z, Li H, et al. Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv Mater 2017;29(40): 1703456.

[170]

Kim H, Kim YS, Mahmood M, Kwon S, Zavanelli N, Kim HS, et al. Fully integrated, stretchable, wireless skin-conformal bioelectronics for continuous stress monitoring in daily life. Adv Sci 2020;7(15):2000810.

[171]

Song Y, Min J, Yu Y, Wang H, Yang Y, Zhang H, et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 2020;6(40): eaay9842.

[172]

Kim J, Jeerapan I, Sempionatto JR, Barfidokht A, Mishra RK, Campbell AS, et al. Wearable bioelectronics: enzyme-based body-worn electronic devices. Acc Chem Res 2018;51(11):2820–8.

[173]

Kim J, Imani S, de Araujo WR, Warchall J, Valdés-Ramírez G, Paixão TRLC, et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron 2015;74:1061–8.

[174]

Kim YS, Mahmood M, Lee Y, Kim NK, Kwon S, Herbert R, et al. All-in-one, wireless, stretchable hybrid electronics for smart, connected, and ambulatory physiological monitoring. Adv Sci 2019;6(17):1900939.

[175]

Boe AJ, Koch LLM, O’Brien MK, Shawen N, Rogers JA, Lieber RL, et al. Automating sleep stage classification using wireless, wearable sensors. NPJ Digit Med 2019;2(1):1–9.

[176]

Boucsein W. Electrodermal activity. 2nd ed. Boston: Springer; 2012.

[177]

Kim H, Kim YS, Mahmood M, Kwon S, Epps F, Rim YS, et al. Wireless, continuous monitoring of daily stress and management practice via soft bioelectronics. Biosens Bioelectron 2021;173:112764.

[178]

Balasubramaniam S, Wirdatmadja SA, Barros MT, Koucheryavy Y, Stachowiak M, Jornet JM. Wireless communications for optogenetics-based brain stimulation: present technology and future challenges. IEEE Commun Mag 2018;56(7):218–24.

[179]

Thimot J, Shepard KL. Bioelectronic devices: wirelessly powered implants. Nat Biomed Eng 2017;1(3):1–2.

[180]

Montgomery KL, Yeh AJ, Ho JS, Tsao V, Mohan Iyer S, Grosenick L, et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods 2015;12(10):969–74.

[181]

Burton A, Obaid SN, Vázquez-Guardado A, Schmit MB, Stuart T, Cai L, et al. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc Natl Acad Sci USA 2020;117(6):2835–45.

[182]

Zhang H, Gutruf P, Meacham K, Montana MC, Zhao X, Chiarelli AM, et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci Adv 2019;5(3):aaw0873.

[183]

Mulberry G, White KA, Kim BN. A wirelessly powered implantable CMOS neural recording sensor array using pulse-based neural amplifier. 2019. bioRxiv:809509.

[184]

Zhang Y, Mickle AD, Gutruf P, McIlvried LA, Guo H, Wu Y, et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci Adv 2019;5(7): aaw5296.

[185]

Song E, Li J, Won SM, Bai W, Rogers JA. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat Mater 2020;19(6):590–603.

[186]

Cho Y, Park J, Lee C, Lee S. Recent progress on peripheral neural interface technology towards bioelectronic medicine. Bioelectron Med 2020;6(1):23.

[187]

Han S, Shin G. Biodegradable optical fiber in a soft optoelectronic device for wireless optogenetic applications. Coatings 2020;10(12):1153.

[188]

Wentz CT, Bernstein JG, Monahan P, Guerra A, Rodriguez A, Boyden ES. A wirelessly powered and controlled device for optical neural control of freelybehaving animals. J Neural Eng 2011;8(4):046021.

[189]

Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. Sci Adv 2017;3(6): 1601649.

[190]

Fiáth R, Márton AL, Mátyás F, Pinke D, Márton G, Tóth K, et al. Slow insertion of silicon probes improves the quality of acute neuronal recordings. Sci Rep 2019;9(111):1–17.

[191]

Steinmetz NA, Koch C, Harris KD, Carandini M. Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Curr Opin Neurobiol 2018;50:92–100.

[192]

Fernández E, Greger B, House PA, Aranda I, Botella C, Albisua J, et al. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng 2014;7:24.

[193]

Tsai AC, Huang ACW, Yu YH, Kuo CS, Hsu CC, Lim YS, et al. A wireless magnetic resonance device for optogenetic applications in an animal model. Sensors 2020;20(20):5869.

[194]

Liu C, Zhao Y, Cai X, Xie Y, Wang T, Cheng D, et al. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsyst Nanoeng 2020;6(1):64.

[195]

Manoufali M, Bialkowski K, Mohammed BJ, Mills PC, Abbosh A. Near-field inductive-coupling link to power a three-dimensional millimeter-size antenna for brain implantable medical devices. IEEE Trans Biomed Eng 2018;65(1):4–14.

[196]

Singer A, Dutta S, Lewis E, Chen Z, Chen JC, Verma N, et al. Magnetoelectric materials for miniature, wireless neural stimulation at therapeutic frequencies. Neuron 2020;107(4):631–43.

[197]

Park SI, Brenner DS, Shin G, Morgan CD, Copits BA, Chung HU, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol 2015;33(12):1280–6.

[198]

Zhang Y, Castro DC, Han Y, Wu Y, Guo H, Weng Z, et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc Natl Acad Sci USA 2019;116(43):21427–37.

基金资助

()

AI Summary AI Mindmap
PDF (2906KB)

3807

访问

0

被引

详细

导航
相关文章

AI思维导图

/