
一种基于轨迹动力学的任务导向型飞行自组网赛博物理路由协议
Die Hu, Shaoshi Yang, Min Gong, Zhiyong Feng, Xuejun Zhu
工程(英文) ›› 2022, Vol. 19 ›› Issue (12) : 217-227.
一种基于轨迹动力学的任务导向型飞行自组网赛博物理路由协议
A Cyber-Physical Routing Protocol Exploiting Trajectory Dynamics for Mission-Oriented Flying Ad Hoc Networks
作为一种特殊的移动自组网(MANET),飞行自组网(FANET)具有在民用无线通信(如5G和6G)和国防工业中使能各种新兴应用的潜力。路由协议在FANET中起着关键作用。但是,在为FANET设计路由协议时,通常假设空中节点随机移动。这对于以任务为导向的FANET(MO-FANET)显然是不合适的。在该网络中,空中节点为了执行某些任务,通常保持良好的编队构型,沿着大致确定的飞行路径从给定的出发点向确定的目标点移动。本文提出了一种基于跨学科集成的新型赛博物理路由协议,基于MOFANET的特定移动模式,充分利用由任务决定的轨迹动力学模型,构建节点重新加入网络和互相分离的时间序列,并将其与每个节点的邻接矩阵一起作为先验信息。通过大量符合真实情况的NS-3 仿真试验,结果表明,与FANET中使用的现有代表性路由协议相比,本文提出的协议在保证更低的开销和更低的平均端到端延迟的同时,保持了相对适度和稳定的网络时延抖动,并实现了更高的数据包传输率(PDR)
As a special type of mobile ad hoc network (MANET), the flying ad hoc network (FANET) has the potential to enable a variety of emerging applications in both civilian wireless communications (e.g., 5G and 6G) and the defense industry. The routing protocol plays a pivotal role in FANET. However, when designing the routing protocol for FANET, it is conventionally assumed that the aerial nodes move randomly. This is clearly inappropriate for a mission-oriented FANET (MO-FANET), in which the aerial nodes typically move toward a given destination from given departure point(s), possibly along a roughly deterministic flight path while maintaining a well-established formation, in order to carry out certain missions. In this paper, a novel cyber-physical routing protocol exploiting the particular mobility pattern of an MO-FANET is proposed based on cross-disciplinary integration, which makes full use of the mission-determined trajectory dynamics to construct the time sequence of rejoining and separating, as well as the adjacency matrix for each node, as prior information. Compared with the existing representative routing protocols used in FANETs, our protocol achieves a higher packet-delivery ratio (PDR) at the cost of even lower overhead and lower average end-to-end latency, while maintaining a reasonably moderate and stable network jitter, as demonstrated by extensive ns-3-based simulations assuming realistic configurations in an MO-FANET.
信息物理系统 / 飞行自组网 / 路由协议 / 轨迹动力学 / 无人机
Cyber-physical system / Flying ad hoc network (FANET) / Routing protocol / Trajectory dynamics / Unmanned aerial vehicle (UAV)
[1] |
Maza I, Caballero F, Capitán J, Martínez-de-Dios JR, Ollero A. Experimental results in multi-UAV coordination for disaster management and civil security applications. J Intell Robot Syst 2011;61(1–4):563–85.
|
[2] |
Vollgger SA, Cruden AR. Mapping folds and fractures in basement and cover rocks using UAV photogrammetry, Cape Liptrap and Cape Paterson, Victoria, Australia. J Struct Geol 2016;85:168–87.
|
[3] |
Meng XY, Wang W, Leong B. SkyStitch: A cooperative multi-UAV-based realtime video surveillance system with stitching. In: Proceedings of 23rd ACM International Conference on Multimedia; 2015 Oct 26–30; Brisbane, QSD, Australia. ACM; 2015. p. 261–70.
|
[4] |
Cheng X, Lyu F, Quan W, Zhou C, He H, Shi W, et al. Space/aerial-assisted computing offloading for IoT applications: a learning-based approach. IEEE J Sel Area Commun 2019;37(5):1117–29.
|
[5] |
Zhao E, Chao T, Wang S, Yang M. Finite-time formation control for multiple flight vehicles with accurate linearization model. Aerosp Sci Technol 2017;71: 90–8.
|
[6] |
Quan W, Cheng N, Qin M, Zhang H, Chan HA, Shen X. Adaptive transmission control for software defined vehicular networks. IEEE Wirel Commun Lett 2019;8(3):653–6.
|
[7] |
Oubbati OS, Lakas A, Zhou F, Günes M, Yagoubi MB. A survey on position-based routing protocols for flying ad hoc networks (FANETs). Veh Commun 2017;10: 29–56.
|
[8] |
Alshbatat AI, Dong L. Cross layer design for mobile ad-hoc unmanned aerial vehicle communication networks. In: Proceedings of 2010 International Conference on Networking, Sensing and Control (ICNSC); 2010 Apr 10–12; Chicago, IL, USA. New York City: IEEE; 2010. p. 331–6.
|
[9] |
Paul AB, Nandi S. Modified optimized link state routing (M-OLSR) for wireless mesh networks. In: Proceedings of 2018 International Conference on Information Technology; 2008 Dec 17–20; Bhubaneswar, India. New York: IEEE; 2008. p. 147–52.
|
[10] |
Park SY, Shin CS, Jeong D, Lee H. DroneNetX: Network reconstruction through connectivity probing and relay deployment by multiple UAVs in ad hoc networks. IEEE Trans Veh Technol 2018;67(11):11192–207.
|
[11] |
Shirani R, St-Hilaire M, Kunz T, Zhou Y, Li J, Lamont L. On the delay of reactivegreedy-reactive routing in unmanned aeronautical ad-hoc networks. Procedia Comput Sci 2012;10:535–42.
|
[12] |
Perkins CE, Royer EM. In: Ad-hoc on-demand distance vector routing. New Orleans, LA, USA. New York City: IEEE; 1999. p. 90–100.
|
[13] |
Camp T, Boleng J, Davies V. A survey of mobility models for ad hoc network research. Wirel Commun Mob Comput 2002;2(5):483–502.
|
[14] |
Cheng N, Quan W, Shi W, Wu H, Ye Q, Zhou H, et al. A comprehensive simulation platform for space–air–ground integrated network. IEEE Wirel Commun 2020;27(1):178–85.
|
[15] |
Sánchez M, Manzoni P. ANEJOS: A Java based simulator for ad hoc networks. Future Gener Comput Syst 2001;17(5):573–83.
|
[16] |
Liang B, Haas ZJ. Predictive distance-based mobility management for multidimensional PCS networks. IEEE/ACM Trans Network 2003;11(5): 718–32.
|
[17] |
Lin Z, Wang L, Han Z, Fu M. A graph Laplacian approach to coordinate-free formation stabilization for directed networks. IEEE Trans Autom Control 2016;61(5):1269–80.
|
[18] |
Wang R, Dong X, Li Q, Ren Z. Distributed adaptive formation control for linear swarm systems with time-varying formation and switching topologies. IEEE Access 2016;4:8995–9004.
|
[19] |
Ning Q, Tao G, Chen B, Lei Y, Yan H, Zhao C. Multi-UAVs trajectory and mission cooperative planning based on the Markov model. Phys Commun 2019;35: 1–10.
|
[20] |
Dong X, Hua Y, Zhou Y, Ren Z, Zhong Y. Theory and experiment on formationcontainment control of multiple multirotor unmanned aerial vehicle systems. IEEE Trans Autom Sci Eng 2019;16(1):229–40.
|
[21] |
Zhong D, Zhang H, Chen K. Trajectory generator of SINS based on flight mechanics and control in simulink. In: Proceedings of 2018 Chinese Automation Congress (CAC); 2018 Nov 30–Dec 2; Xi’an, China. New York City: IEEE; 2018. p. 1638–43.
|
[22] |
Chen K, Wang X, Liu M, Yu Y, Yan J. Coordinate transformation with application in HWIL simulation. Command Control Simul 2017;39(2): 118–22. Chinese.
|
[23] |
Butcher JC. The numerical analysis of ordinary differential equations: Runge– Kutta and general linear methods. Chichester: John Wiley & Sons Ltd; 1987.
|
[24] |
Ferronato JJ, Trentin MAS. Analysis of routing protocols OLSR, AODV and ZRP in real urban vehicular scenario with density variation. IEEE Lat Am Trans 2017;15(9):1727–34.
|
[25] |
Malik FM, Khattak HA, Almogren A, Bouachir O, Din IU, Altameem A. Performance evaluation of data dissemination protocols for connected autonomous vehicles. IEEE Access 2020;8:126896–906.
|
[26] |
Bai R, Singhal M. DOA: DSR over AODV routing for mobile ad hoc networks. IEEE Trans Mobile Comput 2006;5(10):1403–16.
|
[27] |
Chen Q, Kanhere SS, Hassan M. Adaptive position update for geographic routing in mobile ad hoc networks. IEEE Trans Mobile Comput 2013;12(3): 489–501.
|
/
〈 |
|
〉 |