敲低特异性环状非编码RNA显著抑制骨肉瘤的进展

Shidong Wang, Hongliang Zhang, Bo Li, Chenglong Chen, Tingting Ren, Yi Huang, Kai Liu, Jingjing Li, Wei Guo

工程(英文) ›› 2023, Vol. 21 ›› Issue (2) : 187-193.

PDF(1963 KB)
PDF(1963 KB)
工程(英文) ›› 2023, Vol. 21 ›› Issue (2) : 187-193. DOI: 10.1016/j.eng.2021.12.007
研究论文
Article

敲低特异性环状非编码RNA显著抑制骨肉瘤的进展

作者信息 +

Knockdown of a Specific Circular Non-coding RNA Significantly Suppresses Osteosarcoma Progression

Author information +
History +

摘要

骨肉瘤是一种间充质组织来源的恶性肿瘤,好发于儿童和青少年,发生肺转移常导致患者死亡。关于骨肉瘤进展的机制仍不清楚。因此,迫切需要开发新的骨肉瘤治疗靶点和治疗模式。异常表达的非编码环状RNA(circRNA)对骨肉瘤的发生和发展至关重要。本研究的目的是探索一种新的circRNA circ_000203 在骨肉瘤中的表达和作用,阐明其潜在机制。我们发现,在骨肉瘤细胞系和组织中circ_000203 高表达,并且circ_000203 敲低显著抑制了体外和体内的骨肉瘤进展。此外,我们发现circ_000203 是miR-26b-5p 的海绵,而miR-26b-5p 是骨形态发生蛋白受体2(BMPR2)的上游调节因子。因此,BMPR2 的过表达可以减轻对骨肉瘤进展的抑制作用。这表明,敲低circ_000203 可通过miRNA介导的BMPR2 下调抑制骨肉瘤的进展。我们的发现为理解骨肉瘤的发生和发展提供了重要的见解。

Abstract

Osteosarcoma (OS) is a malignant mesenchymal tissue tumor known to occur in children and adolescents, and pulmonary metastasis often leads to death in these patients. The mechanism underlying OS progression remains unclear. Therefore, identifying new therapeutic targets and treatment modalities for OS is urgently needed. Abnormally expressed non-coding circular RNAs (circRNAs) are crucial for the occurrence and development of OS. The purpose of this study was to explore the expression and role of a novel circRNA circ_000203 in OS and elucidate the underlying mechanism. circ_000203 was demonstrated highly expressed in OS cell lines and tissues, and circ_000203 knockdown significantly inhibited OS progression in vitro and in vivo. Furthermore, we found that circ_000203 is a sponge of miR-26b-5p, an upstream regulator of bone morphogenetic protein receptor 2 (BMPR2). Thus, the overexpression of BMPR2 could reduce the inhibitory effect on OS progression. This indicates that knockdown of circ_000203 suppresses OS progression through microRNA (miRNA)-mediated BMPR2 downregulation. Our findings provide important insights for understanding the occurrence and development of OS.

关键词

非编码RNA / 骨肉瘤 / circRNA / 分子机制 / 敲低

Keywords

Non-coding RNA / Osteosarcoma / CircRNA / Molecular mechanism / Knockdown

引用本文

导出引用
Shidong Wang, Hongliang Zhang, Bo Li. 敲低特异性环状非编码RNA显著抑制骨肉瘤的进展. Engineering. 2023, 21(2): 187-193 https://doi.org/10.1016/j.eng.2021.12.007

参考文献

[1]
Niu J, Yan T, Guo W, Wang W, Zhao Z. Insight into the role of autophagy in osteosarcoma and its therapeutic implication. Front Oncol 2019;9:1232.
[2]
Wang S, Li Bo, Zhang H, Chen J, Sun X, Xu J, et al. Improving bioavailability of hydrophobic prodrugs through supramolecular nanocarriers based on recombinant proteins for osteosarcoma treatment. Angew Chem Int Ed Engl 2021;60(20):11252–6.
[3]
Yan Q, Dong H, Su J, Han J, Song B, Wei Q, et al. A review of 3D printing technology for medical applications. Engineering 2018;4(5):729–42.
[4]
Zhang H, Wang J, Ren T, Huang Y, Liang X, Yu Y, et al. Bone marrow mesenchymal stem cell-derived exosomal miR-206 inhibits osteosarcoma progression by targeting TRA2B. Cancer Lett 2020;490:54–65.
[5]
Yang C, Tian Y, Zhao F, Chen Z, Su P, Li Y, et al. Bone microenvironment and osteosarcoma metastasis. Int J Mol Sci 2020;21(19):21.
[6]
Rajappa A, Banerjee S, Sharma V, Khandelia P. Circular RNAs: emerging role in cancer diagnostics and therapeutics. Front Mol Biosci 2020;7:577938.
[7]
Li S, Qian T, Wang X, Liu J, Gu X. Noncoding RNAs and their potential therapeutic applications in tissue engineering. Engineering 2017;3(1):3–15.
[8]
Husser C, Dentz N, Ryckelynck M. Structure-switching RNAs: from gene expression regulation to small molecule detection. Small Struct 2021;2 (4):2000132.
[9]
Abou-Alfa GK, Wu L, Villanueva A. Novel non-protein biomarkers for early detection of hepatocellular carcinoma. Engineering 2021;7(10):1369–74.
[10]
Mao Y, He JX, Zhu M, Dong YQ, He JX. circ0001320 inhibits lung cancer cell growth and invasion by regulating TNFAIP1 and TPM1 expression through sponging miR-558. Hum Cell 2021;34(2):468–77.
[11]
Liu Q, Wang C, Jiang Z, Li S, Li F, Tan HB, et al. circRNA 001306 enhances hepatocellular carcinoma growth by up-regulating CDK16 expression via sponging miR-584-5p. J Cell Mol Med 2020;24(24):14306–15.
[12]
Peng L, Sang H, Wei S, Li Y, Jin D, Zhu X, et al. circCUL2 regulates gastric cancer malignant transformation and cisplatin resistance by modulating autophagy activation via miR-142-3p/ROCK2. Mol Cancer 2020;19(1):156.
[13]
Li Z, Li X, Xu D, Chen X, Li S, Zhang L, et al. An update on the roles of circular RNAs in osteosarcoma. Cell Prolif 2021;54(1):e12936.
[14]
Feng J, Li B, Ying J, Pan W, Liu C, Luo T, et al. Liquid biopsy: application in early diagnosis and monitoring of cancer. Small Struct 2020;1(3):2000063.
[15]
Shen S, Yao T, Xu Y, Zhang D, Fan S, Ma J. circECE1 activates energy metabolism in osteosarcoma by stabilizing c-Myc. Mol Cancer 2020;19(1):151.
[16]
Li H, He L, Tuo Y, Huang Y, Qian B. Circular RNA hsa_circ_0000282 contributes to osteosarcoma cell proliferation by regulating miR-192/XIAP axis. BMC Cancer 2020;20(1):1026.
[17]
Pan F, Zhang J, Tang B, Jing L, Qiu B, Zha Z. The novel circ_0028171/miR-218- 5p/IKBKB axis promotes osteosarcoma cancer progression. Cancer Cell Int 2020;20(1):484.
[18]
Tang CM, Zhang M, Huang L, Hu ZQ, Zhu JN, Xiao Z, et al. circRNA_000203 enhances the expression of fibrosis-associated genes by derepressing targets of miR-26b-5p, Col1a2 and CTGF, in cardiac fibroblasts. Sci Rep 2017;7 (1):40342.
[19]
Koso H, Yi H, Sheridan P, Miyano S, Ino Y, Todo T, et al. Identification of RNAbinding protein LARP4B as a tumor suppressor in glioma. Cancer Res 2016;76 (8):2254–64.
[20]
Li H, Xu JD, Fang XH, Zhu JN, Yang J, Pan R, et al. Circular RNA circRNA_000203 aggravates cardiac hypertrophy via suppressing miR-26b-5p and miR-140-3p binding to Gata4. Cardiovasc Res 2020;116(7):1323–34.
[21]
Zhang H, Yang K, Ren T, Huang Y, Tang X, Guo W. miR-16-5p inhibits chordoma cell proliferation, invasion and metastasis by targeting Smad3. Cell Death Dis 2018;9(6):680.
[22]
Zhang H, Yang K, Ren T, Huang Y, Liang X, Yu Y, et al. miR-100-5p inhibits malignant behavior of chordoma cells by targeting IGF1R. Cancer Manag Res 2020;12:4129–37.
[23]
Wang S, Ren T, Jiao G, Huang Y, Bao X, Zhang F, et al. BMPR2 promotes invasion and metastasis via the RhoA–ROCK–LIMK2 pathway in human osteosarcoma cells. Oncotarget 2017;8(35):58625–41.
[24]
Liang ZZ, Guo C, Zou MM, Meng P, Zhang TT. circRNA–miRNA–mRNA regulatory network in human lung cancer: an update. Cancer Cell Int 2020;20(1):173.
[25]
Lin Y, Jian Z, Jin H, Wei X, Zou X, Guan R, et al. Long non-coding RNA DLGAP1- AS1 facilitates tumorigenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via the feedback loop of miR-26a/b-5p/IL-6/JAK2/ STAT3 and Wnt/b-catenin pathway. Cell Death Dis 2020;11(1):34.
[26]
Han W, Li N, Liu J, Sun Y, Yang X, Wang Y. microRNA-26b-5p enhances T cell responses by targeting PIM-2 in hepatocellular carcinoma. Cell Signal 2019;59:182–90.
[27]
Wu K, Mu X, Jiang J, Tan M, Wang R, Zhou W, et al. miRNA–26a–5p and miR– 26b–5p inhibit the proliferation of bladder cancer cells by regulating PDCD10. Oncol Rep 2018;40(6):3523–32.
[28]
Niu F, Kazimierska M, Nolte IM, Terpstra MM, de Jong D, Koerts J, et al. The miR-26b-5p/KPNA2 axis is an important regulator of burkitt lymphoma cell growth. Cancers 2020;12(6):1464.
[29]
Kim IY, Lee DH, Lee DK, Ahn HJ, Kim MM, Kim SJ, et al. Loss of expression of bone morphogenetic protein receptor type II in human prostate cancer cells. Oncogene 2004;23(46):7651–9.
[30]
Owens P, Pickup MW, Novitskiy SV, Chytil A, Gorska AE, Aakre ME, et al. Disruption of bone morphogenetic protein receptor 2 (BMPR2) in mammary tumors promotes metastases through cell autonomous and paracrine mediators. Proc Natl Acad Sci USA 2012;109(8):2814–9.
[31]
Peng CW, Yue LX, Zhou YQ, Tang S, Kan C, Xia LM, et al. miR-100-3p inhibits cell proliferation and induces apoptosis in human gastric cancer through targeting to BMPR2. Cancer Cell Int 2019;19(1):354.
PDF(1963 KB)

Accesses

Citation

Detail

段落导航
相关文章

/