基于机器学习算法的模型参数区域化方法在无测站流域径流模拟中的应用

吴厚发, 张建云, 鲍振鑫, 王国庆, 王文圣, 杨艳青, 王婕

工程(英文) ›› 2023, Vol. 28 ›› Issue (9) : 93-104.

PDF(4424 KB)
PDF(4424 KB)
工程(英文) ›› 2023, Vol. 28 ›› Issue (9) : 93-104. DOI: 10.1016/j.eng.2021.12.014
研究论文
Article

基于机器学习算法的模型参数区域化方法在无测站流域径流模拟中的应用

作者信息 +

Runoff Modeling in Ungauged Catchments Using Machine Learning Algorithm-Based Model Parameters Regionalization Methodology

Author information +
History +

摘要

模型参数估计是无测站流域径流模拟中需要解决的关键问题。参数区域化是应用最广泛的方法,但模型参数与流域特征间的非线性关系是参数区域化的主要障碍。本文以黄淮海流域内38个小流域为研究对象,进行了径流模拟研究,纳什效率系数(NSE)、决定系数(R2)和百分比偏差(PBIAS)的统计结果表明SWAT模型在各流域径流模拟中具有良好的性能。利用与气候、土壤、植被和地形相关的9个指标来表示与水文过程相关的流域特征。采用6种回归模型分析SWAT模型参数与流域特征之间的定量关系,包括:线性回归方程(LR)、支持向量回归(SVR)、随机森林(RF)、K近邻(kNN)、决策树(DT)和径向基函数(RBF)。首先,将38个流域依次假定为无测站流域。然后,利用其余37个供体流域构建拟合参数的回归模型,估算目标流域的模型参数,进行径流模拟。此外,本文也将基于相似性的区域化方法与基于回归分析的方法进行了对比。结果表明:基于支持向量回归(SVR)的区域化方法估计模型参数时径流模拟精度高。与传统的线性回归方法相比,机器学习算法处理非线性关系的能力突出,因而提高了无测站流域径流模拟的精度。不同区域化方法在湿润地区的表现比较接近,而机器学习算法的优势在干旱区更为明显。当研究区内含有嵌套流域时,由于流域密度高、空间距离短,此时采用基于相似性的区域化方法最好。研究结论可为无测站流域的洪水预报和水资源规划提高参考。

Abstract

Model parameters estimation is a pivotal issue for runoff modeling in ungauged catchments. The nonlinear relationship between model parameters and catchment descriptors is a major obstacle for parameter regionalization, which is the most widely used approach. Runoff modeling was studied in 38 catchments located in the Yellow-Huai-Hai River Basin (YHHRB). The values of the Nash-Sutcliffe efficiency coefficient (NSE), coefficient of determination (R2), and percent bias (PBIAS) indicated the acceptable performance of the soil and water assessment tool (SWAT) model in the YHHRB. Nine descriptors belonging to the categories of climate, soil, vegetation, and topography were used to express the catchment characteristics related to the hydrological processes. The quantitative relationships between the parameters of the SWAT model and the catchment descriptors were analyzed by six regression-based models, including linear regression (LR) equations, support vector regression (SVR), random forest (RF), k-nearest neighbor (kNN), decision tree (DT), and radial basis function (RBF). Each of the 38 catchments was assumed to be an ungauged catchment in turn. Then, the parameters in each target catchment were estimated by the constructed regression models based on the remaining 37 donor catchments. Furthermore, the similarity-based regionalization scheme was used for comparison with the regression-based approach. The results indicated that the runoff with the highest accuracy was modeled by the SVR-based scheme in ungauged catchments. Compared with the traditional LR-based approach, the accuracy of the runoff modeling in ungauged catchments was improved by the machine learning algorithms because of the outstanding capability to deal with nonlinear relationships. The performances of different approaches were similar in humid regions, while the advantages of the machine learning techniques were more evident in arid regions. When the study area contained nested catchments, the best result was calculated with the similarity-based parameter regionalization scheme because of the high catchment density and short spatial distance. The new findings could improve flood forecasting and water resources planning in regions that lack observed data.

关键词

参数估计 / 无测站流域 / 区域化方法 / 机器学习算法 / SWAT模型

Keywords

Parameters estimation / Ungauged catchments / Regionalization scheme / Machine learning algorithms / Soil and water assessment tool model

引用本文

导出引用
吴厚发, 张建云, 鲍振鑫. 基于机器学习算法的模型参数区域化方法在无测站流域径流模拟中的应用. Engineering. 2023, 28(9): 93-104 https://doi.org/10.1016/j.eng.2021.12.014

参考文献

[1]
Y. Guo, Y. Zhang, L. Zhang, Z. Wang. Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: a comprehensive review. Wiley Interdiscip Rev Water, 8 (1) (2021), p. e1487
[2]
Q. Yang, J.E. Almendinger, X. Zhang, M. Huang, X. Chen, G. Leng, et al. Enhancing SWAT simulation of forest ecosystems for water resource assessment: a case study in the St. Croix River basin. Ecol Eng, 120 (2018), pp. 422-431
[3]
K.J. Beven, M.J. Kirkby, J.E. Freer, R. Lamb. A history of TOPMODEL. Hydrol Earth Syst Sci, 25 (2) (2021), pp. 527-549. DOI: 10.5194/hess-25-527-2021
[4]
J. Gong, C. Yao, Z. Li, Y. Chen, Y. Huang, B. Tong. Improving the flood forecasting capability of the Xinanjiang model for small- and medium-sized ungauged catchments in South China. Nat Hazards, 106 (3) (2021), pp. 2077-2109. DOI: 10.1007/s11069-021-04531-0
[5]
S.Y. Woo, S.J. Kim, J.W. Lee, S.H. Kim, Y.W. Kim. Evaluating the impact of interbasin water transfer on water quality in the recipient river basin with SWAT. Sci Total Environ, 776 (2021), p. 145984
[6]
G.E. Clark, K.H. Ahn, R.N. Palmer. Assessing a regression-based regionalization approach to ungauged sites with various hydrologic models in a forested catchment in the northeastern United States. J Hydrol Eng, 22 (12) (2017), p. 05017027. DOI: 10.1061/(ASCE)HE.1943-5584.0001582
[7]
G.Q. Wang, J.Y. Zhang, J.L. Jin, Y.L. Liu, R.M. He, Z.X. Bao, et al. Regional calibration of a water balance model for estimating stream flow in ungauged areas of the Yellow River Basin. Quat Int, 336 (2014), pp. 65-72
[8]
S. Golian, C. Murphy, H. Meresa. Regionalization of hydrological models for flow estimation in ungauged catchments in Ireland. J Hydrol Reg Stud, 36 (2021), p. 100859
[9]
J. Samuel, P. Coulibaly, R.A. Metcalfe. Estimation of continuous streamflow in Ontario ungauged basins: comparison of regionalization methods. J Hydrol Eng, 16 (5) (2011), pp. 447-459
[10]
R.R. Knight, W.S. Gain, W.J. Wolfe. Modelling ecological flow regime: an example from the Tennessee and Cumberland River basins. Ecohydrology, 5 (5) (2012), pp. 613-627. DOI: 10.1002/eco.246
[11]
X. Yang, J. Magnusson, C.Y. Xu. Transferability of regionalization methods under changing climate. J Hydrol, 568 (2019), pp. 67-81
[12]
H.E. Beck, A. I.J.M. van Dijk, A. de Roo, D.G. Miralles, T.R. McVicar, J. Schellekens, et al. Global-scale regionalization of hydrologic model parameters. Water Resour Res, 52 (5) (2016), pp. 3599-3622
[13]
W. Boughton, F. Chiew. Estimating runoff in ungauged catchments from rainfall, PET and the AWBM model. Environ Model Softw, 22 (4) (2007), pp. 476-487
[14]
K. Jafarzadegan, V. Merwade, H. Moradkhani. Combining clustering and classification for the regionalization of environmental model parameters: application to floodplain mapping in data-scarce regions. Environ Modell Softw, 125 (2020), p. 104613
[15]
L. Oudin, A. Kay, V. Andreassian, C. Perrin. Are seemingly physically similar catchments truly hydrologically similar?. Water Resour Res, 46 (11) (2010), p. W11558
[16]
I.A. Guiamel, H.S. Lee. Watershed modelling of the Mindanao River Basin in the Philippines using the SWAT for water resource management. Civ Eng J, 6 (4) (2020), pp. 626-648. DOI: 10.28991/cej-2020-03091496
[17]
J.P.C. Reichl, A.W. Western, N.R. McIntyre, F.H.S. Chiew. Optimization of a similarity measure for estimating ungauged streamflow. Water Resour Res, 45 (10) (2009), p. W10423
[18]
H. Sellami, I. La Jeunesse, S. Benabdallah, N. Baghdadi, M. Vanclooster. Uncertainty analysis in model parameters regionalization: a case study involving the SWAT model in Mediterranean catchments (Southern France). Hydrol Earth Syst Sci, 18 (6) (2014), pp. 2393-2413. DOI: 10.5194/hess-18-2393-2014
[19]
S. Ly, C. Charles, A. Degre. Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: a review. Biotechnol Agron Soc, 17 (2) (2013), pp. 392-406
[20]
S. Heng, T. Suetsugi. Comparison of regionalization approaches in parameterizing sediment rating curve in ungauged catchments for subsequent instantaneous sediment yield prediction. J Hydrol, 512 (2014), pp. 240-253
[21]
C.M.M. Kittel, A.L. Arildsen, S. Dybkjær, E.R. Hansen, I. Linde, E. Slott, et al. Informing hydrological models of poorly gauged river catchments—a parameter regionalization and calibration approach. J Hydrol, 587 (2020), p. 124999
[22]
Y.Q. Zhang, F.H.S. Chiew. Relative merits of different methods for runoff predictions in ungauged catchments. Water Resour Res, 45 (7) (2009), p. W07412
[23]
M. Saadi, L. Oudin, P. Ribstein. Random forest ability in regionalizing hourly hydrological model parameters. Water, 11 (8) (2019), p. 1540. DOI: 10.3390/w11081540
[24]
P. Soni, S. Tripathi, R. Srivastava. A comparison of regionalization methods in monsoon dominated tropical river basins. J Water Clim Chang, 12 (5) (2021), pp. 1975-1996. DOI: 10.2166/wcc.2021.298
[25]
D.J. Lary, A.H. Alavi, A.H. Gandomi, A.L. Walker. Machine learning in geosciences and remote sensing. Geosci Front, 7 (1) (2016), pp. 3-10
[26]
S. Hao, Q. Ma, X. Zhai, G. Lyu, S. Fan, W. Wang. A new machine learning approach for parameter regionalization of flash flood modelling in Henan Province, China. S. Stanciu, K. Kassmi, G. Shmavonyan (Eds.), Proceedings of the 2021 2nd International Conference on Energy, Power and Environmental System Engineering; 2021 Jul 4-5; Shanghai, China, EDP Science, Les Ulis (2021), p. 02010. DOI: 10.1051/e3sconf/202130002010
[27]
S. Ragettli, J. Zhou, H. Wang, C. Liu, L. Guo. Modeling flash floods in ungauged mountain catchments of China: a decision tree learning approach for parameter regionalization. J Hydrol, 555 (2017), pp. 330-346
[28]
Ministry of Water Resources People’s Republic of China. China water resources bulletin 2019. China Water & Power Press, Beijing (2020)
[29]
J. Wu, X.J. Gao. A gridded daily observation dataset over China region and comparison with the other datasets. Chin J Geophys, 56 (4) (2013), pp. 1102-1111 [Chinese].
[30]
D.R. Samal, S. Gedam. Assessing the impacts of land use and land cover change on water resources in the Upper Bhima River Basin, India. Environ Chall, 5 (2021), p. 100251
[31]
M.L. Tan, P.W. Gassman, X. Yang, J. Haywood. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv Water Resour, 143 (2020), p. 103662
[32]
J.G. Arnold, D.N. Moriasi, P.W. Gassman, K.C. Abbaspour, M.J. White, R. Srinivasan, et al. SWAT: model use, calibration, and validation. Trans ASABE, 55 (4) (2012), pp. 1491-1508
[33]
C. Li, H. Fang. Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: using SWAT model. Catena, 201 (2021), p. 105199
[34]
B. Mohammadi, S. Mehdizadeh. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agric Water Manage, 237 (2020), p. 106145
[35]
S.Y. Park, M. Park, W.Y. Lee, C.Y. Lee, J.H. Kim, S. Lee, et al. Machine learning-based prediction of Sasang constitution types using comprehensive clinical information and identification of key features for diagnosis. Integr Med Res, 10 (3) (2021), p. 100668
[36]
K.G. Liakos, P. Busato, D. Moshou, S. Pearson, D. Bochtis. Machine learning in agriculture: a review. Sensors, 18 (8) (2018), p. 2674. DOI: 10.3390/s18082674
[37]
K. Feng, A. González, M. Casero. A kNN algorithm for locating and quantifying stiffness loss in a bridge from the forced vibration due to a truck crossing at low speed. Mech Syst Signal Proc, 154 (2021), p. 107599
[38]
A.H. Mary, A.H. Miry, T. Kara, M.H. Miry. Nonlinear state feedback controller combined with RBF for nonlinear underactuated overhead crane system. J Eng Res, 9 (3A) (2021), pp. 197-208
[39]
Z. Hu, X. Chen, Q. Zhou, D. Chen, J. Li. DISO: a rethink of Taylor diagram. Int J Climatol, 39 (5) (2019), pp. 2825-2832. DOI: 10.1002/joc.5972
[40]
Z. Bao, J. Zhang, J. Liu, G. Fu, G. Wang, R. He, et al. Comparison of regionalization approaches based on regression and similarity for predictions in ungauged catchments under multiple hydro-climatic conditions. J Hydrol, 466-467 (2012), pp. 37-46
[41]
M. Ligaray, H. Kim, S. Sthiannopkao, S. Lee, K.H. Cho, J.H. Kim. Assessment on hydrologic response by climate change in the Chao Phraya River Basin, Thailand. Water, 7 (12) (2015), pp. 6892-6909. DOI: 10.3390/w7126665
[42]
D. Yu, P. Xie, X. Dong, X. Hu, J. Liu, Y. Li, et al. Improvement of the SWAT model for event-based flood simulation on a sub-daily timescale. Hydrol Earth Syst Sci, 22 (9) (2018), pp. 5001-5019. DOI: 10.5194/hess-22-5001-2018
[43]
M. Samimi, A. Mirchi, D. Moriasi, S. Ahn, S. Alian, S. Taghvaeian, et al. Modeling arid/semi-arid irrigated agricultural watersheds with SWAT: applications, challenges, and solution strategies. J Hydrol, 590 (2020), p. 125418
[44]
L. Oudin, V. Andreassian, C. Perrin, C. Michel, N. Le Moine. Spatial proximity, physical similarity, regression and ungaged catchments: a comparison of regionalization approaches based on 913 French catchments. Water Resour Res, 44 (2008), p. W03413
[45]
D.J. Booker, T.H. Snelder. Comparing methods for estimating flow duration curves at ungauged sites. J Hydrol, 434-435 (2012), pp. 78-94
[46]
J. Elith, C.H. Graham, R.P. Anderson, M. Dudík, S. Ferrier, A. Guisan, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29 (2) (2006), pp. 129-151. DOI: 10.1111/j.2006.0906-7590.04596.x
[47]
F.J. Penas, J. Barquin, C. Alvarez. A comparison of modeling techniques to predict hydrological indices in ungauged rivers. Limnetica, 37 (1) (2018), pp. 145-158
[48]
S.S. Patel, P. Ramachandran. A comparison of machine learning techniques for modeling river flow time series: the case of Upper Cauvery River Basin. Water Resour Manage, 29 (2) (2015), pp. 589-602. DOI: 10.1007/s11269-014-0705-0
[49]
J.B. Swain, K.C. Patra. Streamflow estimation in ungauged catchments using regionalization techniques. J Hydrol, 554 (2017), pp. 420-433
[50]
L. Boscarello, G. Ravazzani, A. Cislaghi, M. Mancini.Regionalization of flow-duration curves through catchment classification with streamflow signatures and physiographic-climate indices. J Hydrol Eng, 21 (3) (2016), p. 05015027. DOI: 10.1061/(ASCE)HE.1943-5584.0001307
[51]
R. Merz, G. Blöschl. Regionalisation of catchment model parameters. J Hydrol, 287 (1-4) (2004), pp. 95-123
[52]
S. Mwakalila. Estimation of stream flows of ungauged catchments for river basin management. Phys Chem Earth, 28 (20-27) (2003), pp. 935-942
[53]
T. Razavi, P. Coulibaly. Streamflow prediction in ungauged basins. Review of regionalization methods. J Hydrol Eng, 18 (8) (2013), pp. 958-975
[54]
J. Parajka, A. Viglione, M. Rogger, J.L. Salinas, M. Sivapalan, G. Blöschl. Comparative assessment of predictions in ungauged basins-part 1: runoff-hydrograph studies. Hydrol Earth Syst Sci, 17 (5) (2013), pp. 1783-1795. DOI: 10.5194/hess-17-1783-2013
[55]
X. Yang, J. Magnusson, S. Huang, S. Beldring, C.Y. Xu. Dependence of regionalization methods on the complexity of hydrological models in multiple climatic regions. J Hydrol, 582 (2020), p. 124357
[56]
S. Pool, M. Vis, J. Seibert. Regionalization for ungauged catchments—lessons learned from a comparative large‐sample study. Water Resour Res, 57 (10) (2021), p. WR030437
[57]
Z. Abdulelah Al-Sudani, S.Q. Salih, A. Sharafati, Z.M. Yaseen. Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. J Hydrol, 573 (2019), pp. 1-12
[58]
B. Choubin, K. Solaimani, F. Rezanezhad, M.H. Roshan, A. Malekian, S. Shamshirband. Streamflow regionalization using a similarity approach in ungauged basins: application of the geo-environmental signatures in the Karkheh River Basin. Catena, 182 (2019), Article 104128
[59]
T. Abbas, F. Hussain, G. Nabi, M.W. Boota, R.S. Wu. Uncertainty evaluation of SWAT model for snowmelt runoff in a Himalayan watershed. Terr Atmos Ocean Sci, 30 (2) (2019), pp. 265-279
[60]
Y. Wang, R. Jiang, J. Xie, Y. Zhao, D. Yan, S. Yang. Soil and water assessment tool (SWAT) model: a systemic review. J Coast Res, 93 (SI) (2019), pp. 22-30
PDF(4424 KB)

Accesses

Citation

Detail

段落导航
相关文章

/