[1] |
Y. Guo, Y. Zhang, L. Zhang, Z. Wang. Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: a comprehensive review. Wiley Interdiscip Rev Water, 8 (1) (2021), p. e1487
|
[2] |
Q. Yang, J.E. Almendinger, X. Zhang, M. Huang, X. Chen, G. Leng, et al. Enhancing SWAT simulation of forest ecosystems for water resource assessment: a case study in the St. Croix River basin. Ecol Eng, 120 (2018), pp. 422-431
|
[3] |
K.J. Beven, M.J. Kirkby, J.E. Freer, R. Lamb. A history of TOPMODEL. Hydrol Earth Syst Sci, 25 (2) ( 2021), pp. 527-549. DOI: 10.5194/hess-25-527-2021
|
[4] |
J. Gong, C. Yao, Z. Li, Y. Chen, Y. Huang, B. Tong. Improving the flood forecasting capability of the Xinanjiang model for small- and medium-sized ungauged catchments in South China. Nat Hazards, 106 (3) ( 2021), pp. 2077-2109. DOI: 10.1007/s11069-021-04531-0
|
[5] |
S.Y. Woo, S.J. Kim, J.W. Lee, S.H. Kim, Y.W. Kim. Evaluating the impact of interbasin water transfer on water quality in the recipient river basin with SWAT. Sci Total Environ, 776 (2021), p. 145984
|
[6] |
G.E. Clark, K.H. Ahn, R.N. Palmer. Assessing a regression-based regionalization approach to ungauged sites with various hydrologic models in a forested catchment in the northeastern United States. J Hydrol Eng, 22 (12) ( 2017), p. 05017027. DOI: 10.1061/(ASCE)HE.1943-5584.0001582
|
[7] |
G.Q. Wang, J.Y. Zhang, J.L. Jin, Y.L. Liu, R.M. He, Z.X. Bao, et al. Regional calibration of a water balance model for estimating stream flow in ungauged areas of the Yellow River Basin. Quat Int, 336 (2014), pp. 65-72
|
[8] |
S. Golian, C. Murphy, H. Meresa. Regionalization of hydrological models for flow estimation in ungauged catchments in Ireland. J Hydrol Reg Stud, 36 (2021), p. 100859
|
[9] |
J. Samuel, P. Coulibaly, R.A. Metcalfe. Estimation of continuous streamflow in Ontario ungauged basins: comparison of regionalization methods. J Hydrol Eng, 16 (5) (2011), pp. 447-459
|
[10] |
R.R. Knight, W.S. Gain, W.J. Wolfe. Modelling ecological flow regime: an example from the Tennessee and Cumberland River basins. Ecohydrology, 5 (5) ( 2012), pp. 613-627. DOI: 10.1002/eco.246
|
[11] |
X. Yang, J. Magnusson, C.Y. Xu. Transferability of regionalization methods under changing climate. J Hydrol, 568 (2019), pp. 67-81
|
[12] |
H.E. Beck, A. I.J.M. van Dijk, A. de Roo, D.G. Miralles, T.R. McVicar, J. Schellekens, et al. Global-scale regionalization of hydrologic model parameters. Water Resour Res, 52 (5) (2016), pp. 3599-3622
|
[13] |
W. Boughton, F. Chiew. Estimating runoff in ungauged catchments from rainfall, PET and the AWBM model. Environ Model Softw, 22 (4) (2007), pp. 476-487
|
[14] |
K. Jafarzadegan, V. Merwade, H. Moradkhani. Combining clustering and classification for the regionalization of environmental model parameters: application to floodplain mapping in data-scarce regions. Environ Modell Softw, 125 (2020), p. 104613
|
[15] |
L. Oudin, A. Kay, V. Andreassian, C. Perrin. Are seemingly physically similar catchments truly hydrologically similar?. Water Resour Res, 46 (11) (2010), p. W11558
|
[16] |
I.A. Guiamel, H.S. Lee. Watershed modelling of the Mindanao River Basin in the Philippines using the SWAT for water resource management. Civ Eng J, 6 (4) ( 2020), pp. 626-648. DOI: 10.28991/cej-2020-03091496
|
[17] |
J.P.C. Reichl, A.W. Western, N.R. McIntyre, F.H.S. Chiew. Optimization of a similarity measure for estimating ungauged streamflow. Water Resour Res, 45 (10) (2009), p. W10423
|
[18] |
H. Sellami, I. La Jeunesse, S. Benabdallah, N. Baghdadi, M. Vanclooster. Uncertainty analysis in model parameters regionalization: a case study involving the SWAT model in Mediterranean catchments (Southern France). Hydrol Earth Syst Sci, 18 (6) ( 2014), pp. 2393-2413. DOI: 10.5194/hess-18-2393-2014
|
[19] |
S. Ly, C. Charles, A. Degre. Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale: a review. Biotechnol Agron Soc, 17 (2) (2013), pp. 392-406
|
[20] |
S. Heng, T. Suetsugi. Comparison of regionalization approaches in parameterizing sediment rating curve in ungauged catchments for subsequent instantaneous sediment yield prediction. J Hydrol, 512 (2014), pp. 240-253
|
[21] |
C.M.M. Kittel, A.L. Arildsen, S. Dybkjær, E.R. Hansen, I. Linde, E. Slott, et al. Informing hydrological models of poorly gauged river catchments—a parameter regionalization and calibration approach. J Hydrol, 587 (2020), p. 124999
|
[22] |
Y.Q. Zhang, F.H.S. Chiew. Relative merits of different methods for runoff predictions in ungauged catchments. Water Resour Res, 45 (7) (2009), p. W07412
|
[23] |
M. Saadi, L. Oudin, P. Ribstein. Random forest ability in regionalizing hourly hydrological model parameters. Water, 11 (8) ( 2019), p. 1540. DOI: 10.3390/w11081540
|
[24] |
P. Soni, S. Tripathi, R. Srivastava. A comparison of regionalization methods in monsoon dominated tropical river basins. J Water Clim Chang, 12 (5) ( 2021), pp. 1975-1996. DOI: 10.2166/wcc.2021.298
|
[25] |
D.J. Lary, A.H. Alavi, A.H. Gandomi, A.L. Walker. Machine learning in geosciences and remote sensing. Geosci Front, 7 (1) (2016), pp. 3-10
|
[26] |
S. Hao, Q. Ma, X. Zhai, G. Lyu, S. Fan, W. Wang. A new machine learning approach for parameter regionalization of flash flood modelling in Henan Province, China. S. Stanciu, K. Kassmi, G. Shmavonyan (Eds.), Proceedings of the 2021 2nd International Conference on Energy, Power and Environmental System Engineering; 2021 Jul 4-5; Shanghai, China, EDP Science, Les Ulis (2021), p. 02010. DOI: 10.1051/e3sconf/202130002010
|
[27] |
S. Ragettli, J. Zhou, H. Wang, C. Liu, L. Guo. Modeling flash floods in ungauged mountain catchments of China: a decision tree learning approach for parameter regionalization. J Hydrol, 555 (2017), pp. 330-346
|
[28] |
Ministry of Water Resources People’s Republic of China. China water resources bulletin 2019. China Water & Power Press, Beijing (2020)
|
[29] |
J. Wu, X.J. Gao. A gridded daily observation dataset over China region and comparison with the other datasets. Chin J Geophys, 56 (4) (2013), pp. 1102-1111 [Chinese].
|
[30] |
D.R. Samal, S. Gedam. Assessing the impacts of land use and land cover change on water resources in the Upper Bhima River Basin, India. Environ Chall, 5 (2021), p. 100251
|
[31] |
M.L. Tan, P.W. Gassman, X. Yang, J. Haywood. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv Water Resour, 143 (2020), p. 103662
|
[32] |
J.G. Arnold, D.N. Moriasi, P.W. Gassman, K.C. Abbaspour, M.J. White, R. Srinivasan, et al. SWAT: model use, calibration, and validation. Trans ASABE, 55 (4) (2012), pp. 1491-1508
|
[33] |
C. Li, H. Fang. Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: using SWAT model. Catena, 201 (2021), p. 105199
|
[34] |
B. Mohammadi, S. Mehdizadeh. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agric Water Manage, 237 (2020), p. 106145
|
[35] |
S.Y. Park, M. Park, W.Y. Lee, C.Y. Lee, J.H. Kim, S. Lee, et al. Machine learning-based prediction of Sasang constitution types using comprehensive clinical information and identification of key features for diagnosis. Integr Med Res, 10 (3) (2021), p. 100668
|
[36] |
K.G. Liakos, P. Busato, D. Moshou, S. Pearson, D. Bochtis. Machine learning in agriculture: a review. Sensors, 18 (8) ( 2018), p. 2674. DOI: 10.3390/s18082674
|
[37] |
K. Feng, A. González, M. Casero. A kNN algorithm for locating and quantifying stiffness loss in a bridge from the forced vibration due to a truck crossing at low speed. Mech Syst Signal Proc, 154 (2021), p. 107599
|
[38] |
A.H. Mary, A.H. Miry, T. Kara, M.H. Miry. Nonlinear state feedback controller combined with RBF for nonlinear underactuated overhead crane system. J Eng Res, 9 (3A) (2021), pp. 197-208
|
[39] |
Z. Hu, X. Chen, Q. Zhou, D. Chen, J. Li. DISO: a rethink of Taylor diagram. Int J Climatol, 39 (5) ( 2019), pp. 2825-2832. DOI: 10.1002/joc.5972
|
[40] |
Z. Bao, J. Zhang, J. Liu, G. Fu, G. Wang, R. He, et al. Comparison of regionalization approaches based on regression and similarity for predictions in ungauged catchments under multiple hydro-climatic conditions. J Hydrol, 466-467 (2012), pp. 37-46
|
[41] |
M. Ligaray, H. Kim, S. Sthiannopkao, S. Lee, K.H. Cho, J.H. Kim. Assessment on hydrologic response by climate change in the Chao Phraya River Basin, Thailand. Water, 7 (12) ( 2015), pp. 6892-6909. DOI: 10.3390/w7126665
|
[42] |
D. Yu, P. Xie, X. Dong, X. Hu, J. Liu, Y. Li, et al. Improvement of the SWAT model for event-based flood simulation on a sub-daily timescale. Hydrol Earth Syst Sci, 22 (9) ( 2018), pp. 5001-5019. DOI: 10.5194/hess-22-5001-2018
|
[43] |
M. Samimi, A. Mirchi, D. Moriasi, S. Ahn, S. Alian, S. Taghvaeian, et al. Modeling arid/semi-arid irrigated agricultural watersheds with SWAT: applications, challenges, and solution strategies. J Hydrol, 590 (2020), p. 125418
|
[44] |
L. Oudin, V. Andreassian, C. Perrin, C. Michel, N. Le Moine. Spatial proximity, physical similarity, regression and ungaged catchments: a comparison of regionalization approaches based on 913 French catchments. Water Resour Res, 44 (2008), p. W03413
|
[45] |
D.J. Booker, T.H. Snelder. Comparing methods for estimating flow duration curves at ungauged sites. J Hydrol, 434-435 (2012), pp. 78-94
|
[46] |
J. Elith, C.H. Graham, R.P. Anderson, M. Dudík, S. Ferrier, A. Guisan, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29 (2) ( 2006), pp. 129-151. DOI: 10.1111/j.2006.0906-7590.04596.x
|
[47] |
F.J. Penas, J. Barquin, C. Alvarez. A comparison of modeling techniques to predict hydrological indices in ungauged rivers. Limnetica, 37 (1) (2018), pp. 145-158
|
[48] |
S.S. Patel, P. Ramachandran. A comparison of machine learning techniques for modeling river flow time series: the case of Upper Cauvery River Basin. Water Resour Manage, 29 (2) ( 2015), pp. 589-602. DOI: 10.1007/s11269-014-0705-0
|
[49] |
J.B. Swain, K.C. Patra. Streamflow estimation in ungauged catchments using regionalization techniques. J Hydrol, 554 (2017), pp. 420-433
|
[50] |
L. Boscarello, G. Ravazzani, A. Cislaghi, M. Mancini.Regionalization of flow-duration curves through catchment classification with streamflow signatures and physiographic-climate indices. J Hydrol Eng, 21 (3) ( 2016), p. 05015027. DOI: 10.1061/(ASCE)HE.1943-5584.0001307
|
[51] |
R. Merz, G. Blöschl. Regionalisation of catchment model parameters. J Hydrol, 287 (1-4) (2004), pp. 95-123
|
[52] |
S. Mwakalila. Estimation of stream flows of ungauged catchments for river basin management. Phys Chem Earth, 28 (20-27) (2003), pp. 935-942
|
[53] |
T. Razavi, P. Coulibaly. Streamflow prediction in ungauged basins. Review of regionalization methods. J Hydrol Eng, 18 (8) (2013), pp. 958-975
|
[54] |
J. Parajka, A. Viglione, M. Rogger, J.L. Salinas, M. Sivapalan, G. Blöschl. Comparative assessment of predictions in ungauged basins-part 1: runoff-hydrograph studies. Hydrol Earth Syst Sci, 17 (5) ( 2013), pp. 1783-1795. DOI: 10.5194/hess-17-1783-2013
|
[55] |
X. Yang, J. Magnusson, S. Huang, S. Beldring, C.Y. Xu. Dependence of regionalization methods on the complexity of hydrological models in multiple climatic regions. J Hydrol, 582 (2020), p. 124357
|
[56] |
S. Pool, M. Vis, J. Seibert. Regionalization for ungauged catchments—lessons learned from a comparative large‐sample study. Water Resour Res, 57 (10) (2021), p. WR030437
|
[57] |
Z. Abdulelah Al-Sudani, S.Q. Salih, A. Sharafati, Z.M. Yaseen. Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. J Hydrol, 573 (2019), pp. 1-12
|
[58] |
B. Choubin, K. Solaimani, F. Rezanezhad, M.H. Roshan, A. Malekian, S. Shamshirband. Streamflow regionalization using a similarity approach in ungauged basins: application of the geo-environmental signatures in the Karkheh River Basin. Catena, 182 (2019), Article 104128
|
[59] |
T. Abbas, F. Hussain, G. Nabi, M.W. Boota, R.S. Wu. Uncertainty evaluation of SWAT model for snowmelt runoff in a Himalayan watershed. Terr Atmos Ocean Sci, 30 (2) (2019), pp. 265-279
|
[60] |
Y. Wang, R. Jiang, J. Xie, Y. Zhao, D. Yan, S. Yang. Soil and water assessment tool (SWAT) model: a systemic review. J Coast Res, 93 (SI) (2019), pp. 22-30
|