[1] |
P. Borrelli, D.A. Robinson, L.R. Fleischer, E. Lugato, C. Ballabio, C. Alewell, et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun, 8 (2017), p. 2013.
|
[2] |
R. Lal. Soil erosion impact on agronomic productivity and environment quality. Crit Rev Plant Sci, 17 (4) (1998), pp. 319-464.
|
[3] |
P. Panagos, A. Katsoyiannis. Soil erosion modelling: the new challenges as the result of policy developments in Europe. Environ Res, 172 (2019), pp. 470-474.
|
[4] |
S.D. Keesstra, J. Bouma, J. Wallinga, P. Tittonell, P. Smith, A. Cerdà, et al. The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2 (2) ( 2016), pp. 111-128. DOI: 10.5194/soil-2-111-2016
|
[5] |
S. Visser, S. Keesstra, G. Maas, M. De Cleen, C. Molenaar. Soil as a basis to create enabling conditions for transitions towards sustainable land management as a key to achieve the SDGs by 2030. Sustainability, 11 (23) ( 2019), p. 6792. DOI: 10.3390/su11236792
|
[6] |
N.A. Abbasi, X. Xu, M.E. Lucas-Borja, W. Dang, B. Liu. The use of check dams in watershed management projects: examples from around the world. Sci Total Environ, 676 (2019), pp. 683-691.
|
[7] |
M.E. Lucas-Borja, G. Piton, M. Nichols, C. Castillo, Y. Yang, D.A. Zema. The use of check dams for soil restoration at watershed level: a century of history and perspectives. Sci Total Environ, 692 (2019), pp. 37-38.
|
[8] |
G. Piton, S. Carladous, A. Recking, J.M. Tacnet, F. Liébault, D. Kuss, et al. Why do we build check dams in Alpine streams? An historical perspective from the French experience. Earth Surf Process Landf, 42 (1) ( 2017), pp. 91-108. DOI: 10.1002/esp.3967
|
[9] |
P.R. Robichaud, K.A. Storrar, J.W. Wagenbrenner. Effectiveness of straw bale check dams at reducing post-fire sediment yields from steep ephemeral channels. Sci Total Environ, 676 (2019), pp. 721-731.
|
[10] |
S. Galicia, J. Navarro-Hevia, A. Martínez-Rodríguez, J. Mongil-Manso, J. Santibáñez. ‘Green’, rammed earth check dams: a proposal to restore gullies under low rainfall erosivity and runoff conditions. Sci Total Environ, 676 (2019), pp. 584-594.
|
[11] |
A. Alfonso-Torreño, Á. Gómez-Gutiérrez, S. Schnabel, J.F. Lavado Contador, J.J. de Sanjosé Blasco, M. Sánchez Fernández. sUAS, SfM-MVS photogrammetry and a topographic algorithm method to quantify the volume of sediments retained in check-dams. Sci Total Environ, 678 (2019), pp. 369-382.
|
[12] |
Ministry of Water Resources of China. Bulletin of first national water census for soil and water conservation. China Water Power Press, Beijing (2013). [Chinese].
|
[13] |
G. Zhao, G.M. Kondolf, X. Mu, M. Han, Z. He, Z. Rubin, et al. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena, 148 (2017), pp. 126-137.
|
[14] |
L. Bai, N. Wang, J. Jiao, Y. Chen, B. Tang, H. Wang, et al. Soil erosion and sediment interception by check dams in a watershed for an extreme rainstorm on the Loess Plateau. China Int J Sediment Res, 35 (4) (2020), pp. 408-416.
|
[15] |
Y. Liu, Y. Liu, Z. Shi, M. López-Vicente, G. Wu. Effectiveness of re-vegetated forest and grassland on soil erosion control in the semi-arid Loess Plateau. Catena, 195 (2020), p. 104787.
|
[16] |
S. Yuan, Z. Li, P. Li, G. Xu, H. Gao, L. Xiao, et al. Influence of check dams on flood and erosion dynamic processes of a small watershed in the Loss Plateau. Water, 11 (4) ( 2019), p. 834. DOI: 10.3390/w11040834
|
[17] |
C. Conesa-García, F. López-Bermúdez, R. García-Lorenzo. Bed stability variations after check dam construction in torrential channels (south-east Spain). Earth Surf Process Landf, 32 (14) ( 2007), pp. 2165-2184. DOI: 10.1002/esp.1521
|
[18] |
Y. Wang, B. Fu, L. Chen, Y. Lü, Y. Gao. Check dam in the Loess Plateau of China: engineering for environmental services and food security. Environ Sci Technol, 45 (24) ( 2011), pp. 10298-10299. DOI: 10.1021/es2038992
|
[19] |
J. Mongil-Manso, V. Díaz-Gutiérrez, J. Navarro-Hevia, M. Espina, L. San Segundo. The role of check dams in retaining organic carbon and nutrients. A study case in the Sierra de Ávila mountain range (central Spain). Sci Total Environ, 657 (2019), pp. 1030-1040.
|
[20] |
S. Keesstra, J.P. Nunes, P. Saco, T. Parsons, R. Poeppl, R. Masselink, et al. The way forward: can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics?. Sci Total Environ, 644 (2018), pp. 1557-1572.
|
[21] |
A.R. Vaezi, M. Abbasi, S. Keesstra, A. Cerdà. Assessment of soil particle erodibility and sediment trapping using check dams in small semi-arid catchments. Catena, 157 (2017), pp. 227-240.
|
[22] |
G. Zhao, X. Mu, M. Han, Z. An, P. Gao, W. Sun, et al. Sediment yield and sources in dam-controlled watersheds on the northern Loess Plateau. Catena, 149 (2017), pp. 110-119.
|
[23] |
F. Chen, N. Fang, Y. Wang, L. Tong, Z. Shi. Biomarkers in sedimentary sequences: indicators to track sediment sources over decadal timescales. Geomorphology, 278 (2017), pp. 1-11
|
[24] |
M. Abedini, M.A. Md Said, F. Ahmad. Effectiveness of check dam to control soil erosion in a tropical catchment (The Ulu Kinta Basin). Catena, 97 (2012), pp. 63-70.
|
[25] |
Y. Wei, Z. He, Y. Li, J. Jiao, G. Zhao, X. Mu. Sediment yield deduction from check-dams deposition in the weathered sandstone watershed on the North Loess Plateau, China. Land Degrad Dev, 28 (1) ( 2017), pp. 217-231. DOI: 10.1002/ldr.2628
|
[26] |
I. Ramos-Diez, J. Navarro-Hevia, R. San Martín Fernández, J. Mongil-Manso. Final analysis of the accuracy and precision of methods to calculate the sediment retained by check dams. Land Degrad Dev, 28 (8) ( 2017), pp. 2446-2456. DOI: 10.1002/ldr.2778
|
[27] |
X. Wang, Z. Jin, X. Zhang, J. Xiao, F. Zhang, Y. Pan. High-resolution geochemical records of deposition couplets in a palaeolandslide-dammed reservoir on the Chinese Loess Plateau and its implication for rainstorm erosion. J Soils Sed, 18 ( 2018), pp. 1147-1158. DOI: 10.1007/s11368-017-1888-9
|
[28] |
Y. Wei, Z. He, J. Jiao, Y. Li, Y. Chen, H. Zhao. Variation in the sediment deposition behind check-dams under different soil erosion conditions on the Loess Plateau. China Earth Surf Process Landf, 43 (9) ( 2018), pp. 1899-1912. DOI: 10.1002/esp.4364
|
[29] |
E. Li, X. Mu, G. Zhao, P. Gao, W. Sun. Effects of check dams on runoff and sediment load in a semi-arid river basin of the Yellow River. Stochastic Environ Res Risk Assess, 31 (7) ( 2017), pp. 1791-1803. DOI: 10.1007/s00477-016-1333-4
|
[30] |
D. Pal, S. Galelli, H. Tang, Q. Ran. Toward improved design of check dam systems: a case study in the Loess Plateau, China. J Hydrol, 559 (2018), pp. 762-773.
|
[31] |
B. Fu, S. Wang, Y. Liu, J. Liu, W. Liang, C. Miao. Hydrogeomorphic ecosystem responses to natural and anthropogenic changes in the Loess Plateau of China. Annu Rev Earth Planet Sci, 45 (1) ( 2017), pp. 223-243. DOI: 10.1146/annurev-earth-063016-020552
|
[32] |
G. Zhao, X. Mu, Z. Wen, F. Wang, P. Gao. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad Dev, 24 (5) ( 2013), pp. 499-510. DOI: 10.1002/ldr.2246
|
[33] |
Wei Y. Characteristics of sediment deposition of typical check-dams and its effect on the sediment discharge variation of Yanhe and Huangfuchuan River Basin [dissertation]. Beijing: Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences; 2017. Chinese.
|
[34] |
J.G. Arnold, R. Srinivasan, R.S. Muttiah, J.R. Williams. Large area hydrologic modeling and assessment part I: model development. J Am Water Resour As, 34 (1) ( 1998), pp. 73-89. DOI: 10.1111/j.1752-1688.1998.tb05961.x
|
[35] |
Neitsch SL, Arnold JG, Kiniry JR, Williams JR. Soil and water assessment tool:theoretical documentation. Report. College Station: Texas A&M University System; 2011.
|
[36] |
P. Sun, Y. Wu, X. Wei, B. Sivakumar, L. Qiu, X. Mu, et al. Quantifying the contributions of climate variation, land use change, and engineering measures for dramatic reduction in streamflow and sediment in a typical loess watershed, China. Ecol Eng, 142 (2020), p. 105611.
|
[37] |
X. Zhang. Simulating eroded soil organic carbon with the SWAT-C model. Environ Model Softw, 102 (2018), pp. 39-48
|
[38] |
J. Hu, Y. Wu, L. Wang, P. Sun, F. Zhao, Z. Jin, et al. Impacts of land-use conversions on the water cycle in a typical watershed in the southern Chinese Loess Plateau. J Hydrol, 593 (2021), p. 125741.
|
[39] |
Arnold J, Kiniry J, Srinivasan R, Williams J, Haney E, Neitsch S. SWAT 2012 input/output documentation. Report. College Station: Water Resources Institute; 2013.
|
[40] |
Standardization Administration of China SAC. GB/T 16453.3-2008: Comprehensive control of soil and water conservation—technical specification—technique for erosion control of gullies. Chinese standard. Beijing: Standardization Administration of China (SAC); 2008. Chinese.
|
[41] |
Y. Wang, N. Fang, F. Zhang, L. Wang, G. Wu, M. Yang. Effects of erosion on the microaggregate organic carbon dynamics in a small catchment of the Loess Plateau, China. Soil Tillage Res, 174 (2017), pp. 205-213
|
[42] |
F. Zhao, Y. Wu, L. Qiu, Y. Sun, L. Sun, Q. Li, et al. Parameter uncertainty analysis of the SWAT model in a mountain-loess transitional watershed on the Chinese Loess Plateau. Water, 10 (6) ( 2018), p. 690. DOI: 10.3390/w10060690
|
[43] |
Y. Xu, B. Fu, C. He. Assessing the hydrological effect of the check dams in the Loess Plateau, China, by model simulations. Hydrol Earth Syst Sci, 17 (6) ( 2013), pp. 2185-2193. DOI: 10.5194/hess-17-2185-2013
|
[44] |
X. Xu, H. Zhang, O. Zhang. Development of check-dam systems in gullies on the Loess Plateau. China Environ Sci Policy, 7 (2) (2004), pp. 79-86.
|
[45] |
P. Sun, Y. Wu, Z. Yang, B. Sivakumar, L. Qiu, S. Liu, et al. Can the Grain-for-Green program really ensure a low sediment load on the Chinese Loess Plateau?. Engineering, 5 (5) (2019), pp. 855-864.
|
[46] |
D.N. Moriasi, J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel, T.L. Veith. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. T ASABE, 50 (3) (2007), pp. 885-900.
|
[47] |
H. Mann. Nonparametric tests against trend. Econometrica, 13 (3) ( 1945), pp. 245-259. DOI: 10.2307/1907187
|
[48] |
M.G. Kendall.Rank correlation measures. (4th ed.), Charles Griffin, London (1975)
|
[49] |
M.E. Lucas-Borja, D.A. Zema, M.D. Hinojosa Guzman, Y. Yang, A.C. Hernández, X. Xu, et al. Exploring the influence of vegetation cover, sediment storage capacity and channel dimensions on stone check dam conditions and effectiveness in a large regulated river in México. Ecol Eng, 122 (2018), pp. 39-47.
|
[50] |
J. Rodrigo-Comino, E. Terol, G. Mora, A. Giménez-Morera, A. Cerdà. Vicia sativa Roth. can reduce soil and water losses in recently planted vineyards ( Vitis vinifera L.). Earth Syst Environ, 4 (4) ( 2020), pp. 827-842. DOI: 10.1007/s41748-020-00191-5
|
[51] |
W. Wang, N. Fang, Z. Shi, X. Lu. Prevalent sediment source shift after revegetation in the Loess Plateau of China: implications from sediment fingerprinting in a small catchment. Land Degrad Dev, 29 (11) ( 2018), pp. 3963-3973. DOI: 10.1002/ldr.3144
|
[52] |
Y. Liang, J. Jiao. Characteristics of sediment retention by check-dams before and after the “Grain for Green” project in the He-Long Reach of the Yellow River. Acta Ecol Sin, 39 (12) (2019), pp. 4579-4586.
|
[53] |
Yu X, Hou S, Li Y, Shi X. Identifying sediment sources in Wuding River during “7.26” flood in 2017. Hydro-Sci Eng 2019;(06):31-7. Chinese.
|
[54] |
M.E. Lucas-Borja, G. Piton, Y. Yu, C. Castillo, D. Antonio Zema. Check dams worldwide: objectives, functions, effectiveness and undesired effects. Catena, 204 (2021), p. 105390.
|
[55] |
T. Wang, J. Hou, P. Li, J. Zhao, Z. Li, E. Matta, et al. Quantitative assessment of check dam system impacts on catchment flood characteristics—a case in hilly and gully area of the Loess Plateau. China Nat Hazards, 105 (3) ( 2021), pp. 3059-3077. DOI: 10.1007/s11069-020-04441-7
|
[56] |
J. Yang, X. Shi, Z. Zuo, X. Kong, P. Xiao. Survey and analysis on the construction and operation of warping dams in Henan Province. Soil Water Conserv, 10 (2020), pp. 10-12. [Chinese].
|
[57] |
D. Ran, Z. Zuo, Y. Wu, X.M. Li, Z.H. Li, et al. Recent changes of streamflow and sediment load in the middle Yellow River Basin and their responses to human activities. Science Press, Beijing (2012). [Chinese].
|
[58] |
Y. Wu, S. Liu, L. Qiu, Y. Sun. SWAT-DayCent coupler: an integration tool for simultaneous hydro-biogeochemical modeling using SWAT and DayCent. Environ Model Softw, 86 (2016), pp. 81-90.
|
[59] |
P. Sun, Y. Wu, J. Xiao, J. Hui, J. Hu, F. Zhao, et al. Remote sensing and modeling fusion for investigating the ecosystem water-carbon coupling processes. Sci Total Environ, 697 (2019), p. 134064.
|
[60] |
P. Borrelli, K. Van Oost, K. Meusburger, C. Alewell, E. Lugato, P. Panagos. A step towards a holistic assessment of soil degradation in Europe: coupling on-site erosion with sediment transfer and carbon fluxes. Environ Res, 161 (2018), pp. 291-298.
|
[61] |
X. Mu, C. Gu, W. Sun, G. Zhao, P. Gao, S. Wang. Preliminary assessment effect of vegetation restoration on runoff generation pattern of the Loess Plateau. Yellow River, 41 (10) (2019), pp. 33-41. [Chinese].
|
[62] |
L. Zhang, C. Hu, S. Jian, Q. Wu, G. Ran, Y. Xu. Identifying dominant component of runoff yield processes: a case study in a sub-basin of the middle Yellow River. Hydrol Res, 52 (5) ( 2021), pp. 1033-1047. DOI: 10.2166/nh.2021.046
|
[63] |
Q. Ran, H. Tang, F. Wang, J. Gao. Numerical modelling shows an old check-dam still attenuates flooding and sediment transport. Earth Surf Proc Land, 46 (8) ( 2021), pp. 1549-1567. DOI: 10.1002/esp.5123
|
[64] |
|
[65] |
X. Liu, Y. Gao, S. Ma. Dong GT Sediment reduction of warping dams and its timeliness in the Loess Plateau. J Hydraul Eng, 49 (02) (2018), pp. 145-155.
|
[66] |
B.T. Rodrigues, D.A. Zema, J. González-Romero, M.T. Rodrigues, S. Campos, P. Galletero, et al. The use of unmanned aerial vehicles (UAVs) for estimating soil volumes retained by check dams after wildfires in mediterranean forests. Soil Syst, 5 (1) ( 2021), p. 9. DOI: 10.3390/soilsystems5010009
|