一种用于自动驾驶的车辆概率性长期轨迹预测框架

Jinxin Liu, Yugong Luo, Zhihua Zhong, Keqiang Li, Heye Huang, Hui Xiong

工程(英文) ›› 2022, Vol. 19 ›› Issue (12) : 228-239.

PDF(2565 KB)
PDF(2565 KB)
工程(英文) ›› 2022, Vol. 19 ›› Issue (12) : 228-239. DOI: 10.1016/j.eng.2021.12.020
研究论文
Article

一种用于自动驾驶的车辆概率性长期轨迹预测框架

作者信息 +

A Probabilistic Architecture of Long-Term Vehicle Trajectory Prediction for Autonomous Driving

Author information +
History +

摘要

在混合动态交通环境中,准确地预测周围车辆长期范围内的运动轨迹是自动驾驶车辆(AV)实现合理行为决策和保障行车安全不可或缺的前提条件之一。本文提出了一种车辆长期轨迹预测的概率框架,由驾驶意图推理模型(DIM)和轨迹预测模型(TPM)组成。DIM基于动态贝叶斯网络进行设计和应用,用于准确推断车辆潜在的驾驶意图。文中所提出的DIM结合了基本的交通规则和车辆多维运动信息。为了进一步提高轨迹预测精度并实现预测不确定性识别,本文开发了基于高斯过程(GP)的TPM,综合考虑了车辆模型的短期预测结果和运动特性。最后,在高速换道场景下进行仿真验证,说明了新方法的有效性。通过与其他先进方法进行对比,展示并验证了该框架在车辆长期轨迹预测任务中的优异性能。

Abstract

In mixed and dynamic traffic environments, accurate long-term trajectory forecasting of surrounding vehicles is one of the indispensable preconditions for autonomous vehicles (AVs) to accomplish reasonable behavioral decisions and guarantee driving safety. In this paper, we propose an integrated probabilistic architecture for long-term vehicle trajectory prediction, which consists of a driving inference model (DIM) and a trajectory prediction model (TPM). The DIM is designed and employed to accurately infer the potential driving intention based on a dynamic Bayesian network. The proposed DIM incorporates the basic traffic rules and multivariate vehicle motion information. To further improve the prediction accuracy and realize uncertainty estimation, we develop a Gaussian process (GP)-based TPM, considering both the short-term prediction results of the vehicle model and the driving motion characteristics. Afterward, the effectiveness of our novel approach is demonstrated by conducting experiments on a public naturalistic driving dataset under lane-changing scenarios. The superior performance on the task of long-term trajectory prediction is presented and verified by comparing with other advanced methods.

关键词

自动驾驶 / 动态贝叶斯网络 / 驾驶意图识别 / 高斯过程 / 车辆轨迹预测

Keywords

Autonomous driving / Dynamic Bayesian network / Driving intention recognition / Gaussian process / Vehicle trajectory prediction

引用本文

导出引用
Jinxin Liu, Yugong Luo, Zhihua Zhong. 一种用于自动驾驶的车辆概率性长期轨迹预测框架. Engineering. 2022, 19(12): 228-239 https://doi.org/10.1016/j.eng.2021.12.020

参考文献

[1]
Zhou J, Zhou Y, Wang B, Zang J. Human–cyber–physical systems (HCPSs) in the context of new-generation intelligent manufacturing. Engineering 2019;5 (4):624–36.
[2]
Seif HG, Hu X. Autonomous driving in the iCity—HD maps as a key challenge of the automotive industry. Engineering 2016;2(2):159–62.
[3]
Krüger M, Novo AS, Nattermann T, Bertram T. Interaction-aware trajectory prediction based on a 3D spatio–temporal tensor representation using convolutional–recurrent neural networks. In: Proceedings of 2020 IEEE Intelligent Vehicles Symposium (IV); 2020 Oct 19–Nov 13; Las Vegas, NV, USA. New York City: IEEE; 2020. p. 1122–7.
[4]
Huang H, Wang J, Fei C, Zheng X, Yang Y, Liu J, et al. A probabilistic risk assessment framework considering lane-changing behavior interaction. Sci China Inf Sci 2020;63(9):1–15.
[5]
Lefèvre S, Vasquez D, Laugier C. A survey on motion prediction and risk assessment for intelligent vehicles. ROBOMECH J 2014;1:1.
[6]
Mozaffari S, Al-Jarrah OY, Dianati M, Jennings P, Mouzakitis A. Deep learningbased vehicle behaviour prediction for autonomous driving applications: a review. IEEE Trans Intell Transp Syst 2020;23(1):33–47.
[7]
Rudenko A, Palmieri L, Herman M, Kitani KM, Gavrila DM, Arras KO. Human motion trajectory prediction: a survey. Int J Robot Res 2020;39(8):895–935.
[8]
Sorstedt J, Svensson L, Sandblom F, Hammarstrand L. A new vehicle motion model for improved predictions and situation assessment. IEEE Trans Intell Transp Syst 2011;12(4):1209–19.
[9]
Schubert R, Richter E, Wanielik G. Comparison and evaluation of advanced motion models for vehicle tracking. In: Proceedings of 2008 11th International Conference on Information Fusion; 2008 Jun 30–Jul 3; Cologne, Germany. New York City: IEEE; 2008. p. 1–6.
[10]
Lin CF, Ulsoy AG, LeBlanc DJ. Vehicle dynamics and external disturbance estimation for vehicle path prediction. IEEE Trans Control Syst Technol 2000;8 (3):508–18.
[11]
Kamann A, Bielmeier JB, Hasirlioglu S, Schwarz UT, Brandmeier T. Object tracking based on an extended Kalman filter in high dynamic driving situations. In: Proceedings of 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC); 2017 Oct 16–19; Yokohama, Japan. New York City: IEEE; 2017. p. 1–6.
[12]
Caveney D. Stochastic path prediction using the unscented transform with numerical integration. In: Proceedings of 2007 IEEE Intelligent Transportation Systems Conference; 2007 Sep 30–Oct 3; Bellevue, WA, USA. New York: IEEE; 2007. p. 848–53.
[13]
Berntorp K, Hoang T, Di Cairano S. Motion planning of autonomous road vehicles by particle filtering. IEEE Trans Intell Veh 2019;4(2):197–210.
[14]
Schreier M, Willert V, Adamy J. Bayesian, maneuver-based, long-term trajectory prediction and criticality assessment for driver assistance systems. In: Proceedings of 17th International IEEE Conference on Intelligent Transportation Systems (ITSC); 2014 Oct 8–11; Qingdao, China. New York City: IEEE; 2014. p. 334–41.
[15]
Liu P, Kurt A, Özgüner Ü. Trajectory prediction of a lane changing vehicle based on driver behavior estimation and classification. In: Proceedings of 17th International IEEE Conference on Intelligent Transportation Systems (ITSC); 2014 Oct 8–11; Qingdao, China. New York City: IEEE; 2014. p. 942–7.
[16]
Deo N, Rangesh A, Trivedi MM. How would surround vehicles move? A unified framework for maneuver classification and motion prediction. IEEE Trans Intell Veh 2018;3(2):129–40.
[17]
Kumar P, Perrollaz M, Lefèvre S, Laugier C. Learning-based approach for online lane change intention prediction. In: Proceedings of 2013 IEEE Intelligent Vehicles Symposium (IV); 2013 Jun 23–26; Gold Coast, QLD, Australia. New York City: IEEE; 2013. p. 797–802.
[18]
Streubel T, Hoffmann KH. Prediction of driver intended path at intersections. In: Proceedings of 2014 IEEE Intelligent Vehicles Symposium Proceedings; 2014 Jun 8–11; New York City: IEEE; 2014. p. 134–9.
[19]
Brown K, Driggs-Campbell K, Kochenderfer MJ. Modeling and prediction of human driver behavior: a survey. 2020. arXiv:2006.08832.
[20]
Xing Y, Lv C, Wang H, Wang H, Ai Y, Cao D, et al. Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges. IEEE Trans Veh Technol 2019;68(5):4377–90.
[21]
Wiest J, Höffken M, Kreßel U, Dietmayer K. Probabilistic trajectory prediction with Gaussian mixture models. In: Proceedings of 2012 IEEE Intelligent Vehicle Symposium; 2012 Jun 3–7; Madrid, Spain. New York City: IEEE; 2012. p. 141–6.
[22]
Gao H, Zhu J, Zhang T, Xie G, Kan Z, Hao Z, et al. Situational assessment for intelligent vehicles based on stochastic model and Gaussian distributions in typical traffic scenarios. IEEE Trans Syst Man Cybern Syst. In press.
[23]
Schreier M, Willert V, Adamy J. An integrated approach to maneuver-based trajectory prediction and criticality assessment in arbitrary road environments. IEEE Trans Intell Transp Syst 2016;17(10):2751–66.
[24]
Li J, Wu J, Sun H, Jiang Y, Deng W, Zhu B. Traffic modeling considering motion uncertainties. SAE Internat 2017.
[25]
Houenou A, Bonnifait P, Cherfaoui V, Yao W. Vehicle trajectory prediction based on motion model and maneuver recognition. In: Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2013 Nov 3–7; Tokyo, Japan. New York City: IEEE; 2013. p. 4363–9.
[26]
Xie G, Gao H, Qian L, Huang B, Li K, Wang J. Vehicle trajectory prediction by integrating physics- and maneuver-based approaches using interactive multiple models. IEEE Trans Ind Electron 2018;65(7):5999–6008.
[27]
Schlenoff C, Madhavan R, Kootbally Z. PRIDE: a hierarchical, integrated prediction framework for autonomous on-road driving. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation; 2006 May 15–19; Orlando, FL, USA. New York City: IEEE; 2006. p. 2348–53.
[28]
Deo N, Trivedi MM. Convolutional social pooling for vehicle trajectory prediction. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop (CVPRW); 2018 Jul 18–22; Salt Lake City, UT, USA. New York City: IEEE; 2018. p. 1468–76.
[29]
Messaoud K, Yahiaoui I, Verroust-Blondet A, Nashashibi F. Relational recurrent neural networks for vehicle trajectory prediction. In: Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019 Oct 27–30; Auckland, New Zealand. New York City: IEEE; 2019. p. 1813–8.
[30]
Yan J, Peng Z, Yin H, Wang J, Wang X, Shen Y, et al. Trajectory prediction for intelligent vehicles using spatial-attention mechanism. IET Intell Transp Syst 2020;14(13):1855–63.
[31]
Mo X, Xing Y, Lv C. Interaction-aware trajectory prediction of connected vehicles CNN-LSTM networks. In: Proceedings of IECON 2020 46th Annual Conference of the IEEE Industrial Electronics Society; 2020 Oct 18–21; Singapore. New York City: IEEE; 2020. p. 5057–62.
[32]
Xing Y, Lv C, Cao D. Personalized vehicle trajectory prediction based on joint time-series modeling for connected vehicles. IEEE Trans Veh Technol 2020;69 (2):1341–52.
[33]
Xing Y, Lv C, Cao D, Lu C. Energy oriented driving behavior analysis and personalized prediction of vehicle states with joint time series modeling. Appl Energy 2020;261:114471.
[34]
Murphy KP. Dynamic Bayesian networks: representation, inference and learning [dissertation]. Berkeley: University of California, Berkeley; 2002.
[35]
Rabiner LR. A tutorial on hidden Marko models and selected applications in speech recognition. Proc IEEE 1989;77(2):257–86.
[36]
Minka TP. Expectation propagation for approximate Bayesian inference. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence; 2001 Aug 2–5; Seattle, WA, USA. San Francisco: Morgan Kaufmann Publishers Inc.; 2001. p. 362–9.
[37]
Liu J, Luo Y, Xiong H, Wang T, Huang H, Zhong Z. An integrated approach to probabilistic vehicle trajectory prediction via driver characteristic and intention estimation. In: Proceedings of 2019 IEEE Intelligent Transportation Systems Conference (ITSC); 2019 Oct 27–30; Auckland, New Zealand. New York City: IEEE; 2019. p. 3526–32.
[38]
Xiao W, Zhang L, Meng D. Vehicle trajectory prediction based on motion model and maneuver model fusion with interactive multiple models. SAE Int J Adv Curr Pract Mobil 2020;2:3060–71.
[39]
Williams CK, Rasmussen CE. Gaussian processes for machine learning. Cambridge: MIT Press; 2006.
[40]
Krajewski R, Bock J, Kloeker L, Eckstein L. The highD dataset: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. In: Proceedings of 2018 21st International Conference on Intelligent Transportation Systems (ITSC); 2018 Nov 4–7; Maui, HI, USA. New York City: IEEE; 2018. p. 2118–25.
[41]
Bishop CM. Pattern recognition and machine learning. New York: Springer; 2006.
[42]
Wang H, Wang W, Yuan S, Li X. Uncovering interpretable internal states of merging tasks at highway on-ramps for autonomous driving decision-making, 2021. arXiv: 2102.07530.
[43]
Yang T, Nan Z, Zhang H, Chen S, Zheng N. Traffic agent trajectory prediction using social convolution and attention mechanism. 2020. arXiv: 2007.02515.
PDF(2565 KB)

Accesses

Citation

Detail

段落导航
相关文章

/