
数据驱动的随机微分方程辨识
Yasen Wang, Huazhen Fang, Junyang Jin, Guijun Ma, Xin He, Xing Dai, Zuogong Yue, Cheng Cheng, Hai-Tao Zhang, Donglin Pu, Dongrui Wu, Ye Yuan, Jorge Gonçalves, Jürgen Kurths, Han Ding
工程(英文) ›› 2022, Vol. 17 ›› Issue (10) : 244-252.
数据驱动的随机微分方程辨识
Data-Driven Discovery of Stochastic Differential Equations
随机微分方程(SDE)是一种广泛用于描述受不同来源噪声干扰的复杂过程或现象的数学模型。由于数据固有的强随机性和系统动力学的复杂性,控制系统的SDE的辨识通常是一个挑战。辨识SDE的现有参数化方法的实用性通常受到数据资源不足的限制。本研究提出了一种通过稀疏贝叶斯学习(SBL)技术从候选基函数空间中搜索简洁但物理必需的表示形式来辨识SDE的新框架。更重要的是,利用SBL的解析可处理性开发了一种可以通过少量数据来高效地构建辨识SDE的线性回归模型的方法。本文利用股票和石油价格、轴承变化和风速的真实数据,以及包括广义维纳(Wiener)过程和朗之万方程在内的著名随机动力系统的仿真数据,验证了所提出框架的有效性。该框架旨在帮助专家从自然科学、经济学和工程领域的随机现象中提取随机数学模型,用于分析、预测和决策。
Stochastic differential equations (SDEs) are mathematical models that are widely used to describe complex processes or phenomena perturbed by random noise from different sources. The identification of SDEs governing a system is often a challenge because of the inherent strong stochasticity of data and the complexity of the system's dynamics. The practical utility of existing parametric approaches for identifying SDEs is usually limited by insufficient data resources. This study presents a novel framework for identifying SDEs by leveraging the sparse Bayesian learning (SBL) technique to search for a parsimonious, yet physically necessary representation from the space of candidate basis functions. More importantly, we use the analytical tractability of SBL to develop an efficient way to formulate the linear regression problem for the discovery of SDEs that requires considerably less time-series data. The effectiveness of the proposed framework is demonstrated using real data on stock and oil prices, bearing variation, and wind speed, as well as simulated data on well-known stochastic dynamical systems, including the generalized Wiener process and Langevin equation. This framework aims to assist specialists in extracting
stochastic mathematical models from random phenomena in the natural sciences, economics, and engineering fields for analysis, prediction, and decision making.
数据驱动方法 / 系统辨识 / 稀疏贝叶斯学习 / 随机微分方程 / 随机现象
Data-driven method / System identification / Sparse Bayesian learning / Stochastic differential equations / Random phenomena
[1] |
Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 1905;322(8):549–60. German.
|
[2] |
Bose T, Trimper S. Stochastic model for tumor growth with immunization. Phys Rev E 2009;79:051903.
|
[3] |
Hull JC. Options, futures, and other derivatives. 9th ed. Boston: Pearson; 2015.
|
[4] |
Wilkinson DJ. Stochastic modelling for quantitative description of heterogeneous biological systems. Nat Rev Genet 2009;10(2):122–33.
|
[5] |
Chong KL, Shi JQ, Ding GY, Ding SS, Lu HY, Zhong JQ, et al. Vortices as Brownian particles in turbulent flows. Sci Adv 2020;6(34):eaaz1110.
|
[6] |
Rigas G, Morgans AS, Brackston RD, Morrison JF. Diffusive dynamics and stochastic models of turbulent axisymmetric wakes. J Fluid Mech 2015;778 (R2):1–10.
|
[7] |
Calif R. PDF models and synthetic model for the wind speed fluctuations based on the resolution of Langevin equation. Appl Energy 2012;99:173–82.
|
[8] |
Friedrich R, Siegert S, Peinke J, Lück St, Siefert M, Lindemann M, et al. Extracting model equations from experimental data. Phys Lett A 2000;271:217–22.
|
[9] |
Lamouroux D, Lehnertz K. Kernel-based regression of drift and diffusion coefficients of stochastic processes. Phys Lett A 2009;373:3507–12.
|
[10] |
Rajabzadeh Y, Rezaie AH, Amindavar H. A robust nonparametric framework for reconstruction of stochastic differential equation models. Phys A 2016;450:294–304.
|
[11] |
Papaspiliopoulos O, Pokern Y, Roberts GO, Stuart AM. Nonparametric estimation of diffusions: a differential equations approach. Biometrika 2012;99:511–31.
|
[12] |
Van der Meulen F, Schauer M, Van Zanten H. Reversible jump MCMC for nonparametric drift estimation for diffusion processes. Comput Stat Data Anal 2014;71:615–32.
|
[13] |
Batz P, Ruttor A, Opper M. Approximate Bayes learning of stochastic differential equations. Phys Rev E 2018;98:022109.
|
[14] |
Garcia CA, Otero A, Felix P, Jesus P, Marquez DG. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes. Phys Rev E 2017;96:022104.
|
[15] |
Bandi FM, Phillips PCB. A simple approach to the parametric estimation of potentially nonstationary diffusions. J Econom 2007;137:354–95.
|
[16] |
Brunton SL, Proctor JL, Kutz JN. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc Natl Acad Sci USA 2016;113:3932–7.
|
[17] |
Boninsegna L, Nuske F, Clementi C. Sparse learning of stochastic dynamical equations. J Chem Phys 2018;148:241723.
|
[18] |
Callaham JL, Loiseau JC, Rigas G, Brunton SL. Nonlinear stochastic modeling with Langevin regression. Proc R Soc A Math Phys Eng Sci 2021;477:20210092.
|
[19] |
Tipping ME. Sparse Bayesian learning and the relevance vector machine. J Mach Learn Res 2001;1:211–44.
|
[20] |
Wipf DP, Rao BD. Sparse Bayesian learning for basis selection. IEEE Trans Signal Process 2004;52:2153–64.
|
[21] |
Pan W, Yuan Y, Goncalves J, Stan GB. A sparse Bayesian approach to the identification of nonlinear state–space systems. IEEE Trans Auto Control 2016;61:182–7.
|
[22] |
Yuan Y, Tang X, Zhou W, Pan W, Li X, Zhang HT, et al. Data driven discovery of cyber physical systems. Nat Commun 2019;10:1–9.
|
[23] |
Ping Z, Li X, He W, Yang T, Yuan Y. Sparse learning of network-reduced models for locating low frequency oscillations in power systems. Appl Energy 2020;262:114541.
|
[24] |
Zhou W, Ardakanian O, Zhang HT, Yuan Y. Bayesian learning-based harmonic state estimation in distribution systems with smart meter and DPMU data. IEEE Trans Smart Grid 2020;11:832–45.
|
[25] |
Yuan Y, Zhang H, Wu Y, Zhu T, Ding H. Bayesian learning-based modelpredictive vibration control for thin-walled workpiece machining processes. IEEE-ASME Trans Mechatron 2017;22:509–20.
|
[26] |
Mao X. Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions. Appl Math Comput 2011;217:5512–24.
|
[27] |
Mao X. The truncated Euler–Maruyama method for stochastic differential equations. J Comput Appl Math 2015;290:370–84.
|
[28] |
Ghasemi F, Sahimi M, Peinke J, Friedrich R, Jafari GR, Tabar MRR. Markov analysis and Kramers–Moyal expansion of nonstationary stochastic processes with application to the fluctuations in the oil price. Phys Rev E 2007;75:060102.
|
[29] |
Langevin P. Sur la théorie du mouvement Brownien. C R Acad Sci 1908;146:530–3. French.
|
[30] |
Coffey W, Kalmykov YP. The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering. 3rd ed. Singapore: World Scientific; 2012.
|
[31] |
Shao H, Jiang H, Zhang X, Niu M. Rolling bearing fault diagnosis using an optimization deep belief network. Meas Sci Technol 2015;26:115002.
|
[32] |
Yuan Y, Ma G, Cheng C, Zhou B, Zhao H, Zhang HT, et al. A general end-toend diagnosis framework for manufacturing systems. Natl Sci Rev 2020;7:418–29.
|
[33] |
Cheng C, Ma G, Zhang Y, Sun M, Teng F, Ding H, et al. A deep learning-based remaining useful life prediction approach for bearings. IEEE-ASME Trans Mechatron 2020;25(3):1243–54.
|
[34] |
Safizadeh MS, Latifi SK. Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell. Inf Fusion 2014;18:1–8.
|
[35] |
Fama EF. Efficient capital markets: a review of theory and empirical work. J Financ 1970;25:383–417.
|
[36] |
Black F, Scholes M. The pricing of options and corporate liabilities. J Polit Econ 1973;81:637–54.
|
[37] |
Merton RC. Theory of rational option pricing. Bell J Econ Manag Sci 1973:141–83.
|
[38] |
Zárate-Miñano R, Anghel M, Milano F. Continuous wind speed models based on stochastic differential equations. Appl Energy 2013;104:42–9.
|
[39] |
Zárate-Miñano R, Milano F. Construction of SDE-based wind speed models with exponentially decaying autocorrelation. Renew Energy 2016;94:186–96.
|
[40] |
National Institute of Water and Atmospheric Research Limited. CliFlo: NIWA’s National Climate Database [Internet]. Auckland: National Institute of Water and Atmospheric Research Limited; [cited 2020 Dec 8]. Available from: http://cliflo. niwa.co.nz/.
|
[41] |
Kusiak A, Li W, Song Z. Dynamic control of wind turbines. Renew Energy 2010;35:456–63.
|
[42] |
Melício R, Mendes VMF, Catalão JPS. Transient analysis of variable-speed wind turbines at wind speed disturbances and a pitch control malfunction. Appl Energy 2011;88:1322–30.
|
[43] |
Chang Y, Wong JF. Oil price fluctuations and Singapore economy. Energ Policy 2003;31:1151–65.
|
[44] |
Lizardo RA, Mollick AV. Oil price fluctuations and US dollar exchange rates. Energy Econ 2010;32:399–408.
|
/
〈 |
|
〉 |