基于刚性与非刚性Square-Twist胞元混合排布的折纸超材料设计与性能编程研究

Jiayao Ma, Shixi Zang, Yan Chen, Zhong You

工程(英文) ›› 2022, Vol. 17 ›› Issue (10) : 82-92.

PDF(5614 KB)
PDF(5614 KB)
工程(英文) ›› 2022, Vol. 17 ›› Issue (10) : 82-92. DOI: 10.1016/j.eng.2022.02.015
研究论文
Article

基于刚性与非刚性Square-Twist胞元混合排布的折纸超材料设计与性能编程研究

作者信息 +

The Tessellation Rule and Properties Programming of Origami Metasheets Built with a Mixture of Rigid and Non-Rigid Square-Twist Patterns

Author information +
History +

摘要

相比由完全相同的胞元组成的超材料,由类型和性能均不同的胞元形成的超材料能够实现更大的力学性能调控范围。然而,目前关于此种超材料的几何设计和性能编程方法鲜有报道。本文通过将一系列不同类型的square-twist 折纸胞元进行空间排布,设计了一种新型折纸超材料。首先建立了超材料胞元的空间排布规则,保证了相邻胞元山-谷线折痕的几何匹配。进而进行了双轴拉伸实验,实验结果表明该新型超材料的变形能、最大刚度和初始峰值力均可由组成胞元的对应特性叠加得到,并且通过改变胞元类型、数量、几何参数、材料参数可以实现对超材料力学性能的大范围编程调控。此外,对具有固定胞元数量的超材料,通过改变山-谷线折痕的排布可以得到胞元类型与数量不同的一系列超材料,从而实现根据具体需求的力学性能重编程。本工作为可编程折纸超材料的设计提供了新的思路,在机械等工程领域具有广阔的应用前景。

Abstract

Metamaterials constructed from origami units of different types and behaviors could potentially offer a broader scope of mechanical properties than those formed from identical unit types. However, the geometric design rules and property programming methods for such metamaterials have yet to be extensively explored. In this paper, we propose a new kind of origami metasheet by incorporating a family of different square-twist units. The tessellation rule of these metasheets is established to allow compatible mountain–valley crease assignments and geometric parameters among neighboring units. We demonstrate through experiments that the energy, initial peak force, and maximum stiffness of the metasheets can be obtained by a summation of the properties of the constitutional units. Based on this, we are able to program the mechanical properties of the metasheets over a wide range by varying the types and proportions of the units, as well as their geometric and material parameters. Furthermore, for a metasheet with a fixed number of units, all the geometrically compatible tessellations can be folded out of the same pre-creased sheet material by simply changing the mountain–valley assignments, thereby allowing the properties of the metasheet to be re-programmed based on specific requirements. This work could inspire a new class of programmable origami metamaterials for current and future mechanical and other engineering applications.

关键词

折纸超材料 / 超材料 / square-twist折纸 / 非周期性排布 / 可编程性

Keywords

Origami metamaterials / Metasheets / Square-twist pattern / Non-periodic tessellation / Programmability

引用本文

导出引用
Jiayao Ma, Shixi Zang, Yan Chen. 基于刚性与非刚性Square-Twist胞元混合排布的折纸超材料设计与性能编程研究. Engineering. 2022, 17(10): 82-92 https://doi.org/10.1016/j.eng.2022.02.015

参考文献

[1]
Bertoldi K, Vitelli V, Christensen J, van Hecke M. Flexible mechanical metamaterials. Nat Rev Mater 2017;2(11):17066.
[2]
Kadic M, Milton GW, van Hecke M, Wegener M. 3D metamaterials. Nat Rev Phys 2019;1(3):198–210.
[3]
Liu RP, Ji CL, Zhao ZY, Zhou T. Metamaterials: reshape and rethink. Engineering 2015;1(2):179–84.
[4]
Zhang Y, Matsumoto EA, Peter A, Lin PC, Kamien RD, Yang S. One-step nanoscale assembly of complex structures via harnessing of an elastic instability. Nano Lett 2008;8(4):1192–6.
[5]
Matsumoto EA, Kamien RD. Elastic-instability triggered pattern formation. Phys Rev E 2009;80(2):021604.
[6]
Bertoldi K, Reis PM, Willshaw S, Mullin T. Negative Poisson’s ratio behavior induced by an elastic instability. Adv Mater 2010;22(3):361–6.
[7]
Matsumoto EA, Kamien RD. Patterns on a roll: a method of continuous feed nanoprinting. Soft Matter 2012;8(43):11038–41.
[8]
Brunck V, Lechenault F, Reid A, Adda-Bedia M. Elastic theory of origami-based metamaterials. Phys Rev E 2016;93(3):033005.
[9]
Kamrava S, Mousanezhad D, Ebrahimi H, Ghosh R, Vaziri A. Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Sci Rep 2017;7(1):46046.
[10]
Sengupta S, Li S. Harnessing the anisotropic multistability of stacked-origami mechanical metamaterials for effective modulus programming. J Intell Mater Syst Struct 2018;29(14):2933–45.
[11]
Waitukaitis S, Menaut R, Chen BG, van Hecke M. Origami multistability: from single vertices to metasheets. Phys Rev Lett 2015;114(5):055503.
[12]
Boatti E, Vasios N, Bertoldi K. Origami metamaterials for tunable thermal expansion. Adv Mater 2017;29(26):1700360.
[13]
Ni X, Guo X, Li J, Huang Y, Zhang Y, Rogers JA. 2D mechanical metamaterials with widely tunable unusual modes of thermal expansion. Adv Mater 2019;31 (48):1905405.
[14]
Zhang L, Song B, Liu R, Zhao A, Zhang J, Zhuo L, et al. Effects of structural parameters on the Poisson’s ratio and compressive modulus of 2D pentamode structures fabricated by selective laser melting. Engineering 2020;6(1):56–67.
[15]
Zheng X, Lee H, Weisgraber TH, Shusteff M, DeOtte J, Duoss EB, et al. Ultralight, ultrastiff mechanical metamaterials. Science 2014;344(6190):1373–7.
[16]
Berger JB, Wadley HNG, McMeeking RM. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness. Nature 2017;543(7646): 533–7.
[17]
Silverberg JL, Evans AA, McLeod L, Hayward RC, Hull T, Santangelo CD, et al. Using origami design principles to fold reprogrammable mechanical metamaterials. Science 2014;345(6197):647–50.
[18]
Zhai Z, Wang Y, Jiang H. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness. Proc Natl Acad Sci USA 2018;115(9):2032–7.
[19]
Zhai Z, Wang Y, Lin K, Wu L, Jiang H. In situ stiffness manipulation using elegant curved origami. Sci Adv 2020;6(47):eabe2000.
[20]
Schenk M, Guest SD. Geometry of Miura-folded metamaterials. Proc Natl Acad Sci USA 2013;110(9):3276–81.
[21]
Zhou X, Zang S, You Z. Origami mechanical metamaterials based on the Miuraderivative fold patterns. Proc Math Phys Eng Sci 2016;472(2191):20160361.
[22]
Eidini M, Paulino GH. Unraveling metamaterial properties in zigzag-base folded sheets. Sci Adv 2015;1(8):e1500224.
[23]
Ma J, Song J, Chen Y. An origami-inspired structure with graded stiffness. Int J Mech Sci 2018;136:134–42.
[24]
Liu K, Novelino LS, Gardoni P, Paulino GH. Big influence of small random imperfections in origami-based metamaterials. Proc Math Phys Eng Sci 2020;476(2241):20200236.
[25]
Yuan L, Dai H, Song J, Ma J, Chen Y. The behavior of a functionally graded origami structure subjected to quasi-static compression. Mater Des 2020;189:108494.
[26]
Kidambi N, Wang KW. Dynamics of Kresling origami deployment. Phys Rev E 2020;101(6):063003.
[27]
Lv C, Krishnaraju D, Konjevod G, Yu H, Jiang H. Origami based mechanical metamaterials. Sci Rep 2014;4(1):5979.
[28]
Chen Z, Wu T, Nian G, Shan Y, Liang X, Jiang H, et al. Ron Resch origami pattern inspired energy absorption structures. J Appl Mech 2019;86(1):011005.
[29]
Dieleman P, Vasmel N, Waitukaitis S, van Hecke M. Jigsaw puzzle design of pluripotent origami. Nat Phys 2020;16(1):63–8.
[30]
Silverberg JL, Na JH, Evans AA, Liu B, Hull TC, Santangelo CD, et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat Mater 2015;14(4):389–93. Corrigendum in: Nat Mater 2015;14:540.
[31]
Wang LC, Song WL, Fang D. Twistable origami and kirigami: from structureguided smartness to mechanical energy storage. ACS Appl Mater Interfaces 2019;11(3):3450–8.
[32]
Wang LC, Song WL, Zhang YJ, Qu MJ, Zhao Z, Chen M, et al. Active reconfigurable twistable square-twist origami. Adv Funct Mater 2020;30(13):1909087.
[33]
Peng R, Ma J, Chen Y. The effect of mountain-valley folds on the rigid foldability of double corrugated pattern. Mechanism Mach Theory 2018;128:461–74.
[34]
Chen Y, Fan L, Bai Y, Feng J, Sareh P. Assigning mountain-valley fold lines of flat-foldable origami patterns based on graph theory and mixed-integer linear programming. Comput Strucy 2020;239:106328.
[35]
Chen Y, Yan J, Feng J, Sareh P. Particle swarm optimization-based metaheuristic design generation of non-trivial flat-foldable origami tessellations with degree-4 vertices. J Mech Des 2021;143(1):011703.
[36]
Feng H, Peng R, Zang S, Ma J, Chen Y. Rigid foldability and mountain-valley crease assignments of square-twist origami pattern. Mechanism Mach Theory 2020;152:103947.
[37]
Zang S, Ma J, Chen Y. Deformation characteristics and mechanical properties of a non-rigid square-twist origami structure with rotational symmetry. 2021. arXiv:2109.12488.
[38]
Ma J, Zang S, Feng H, Chen Y, You Z. Theoretical characterization of a non-rigidfoldable square-twist origami for property programmability. Int J Mech Sci 2021;189:105981.
[39]
Lyu S, Qin B, Deng H, Ding X. Origami-based cellular mechanical metamaterials with tunable Poisson’s ratio: construction and analysis. Int J Mech Sci 2021;212:106791.
[40]
Jha DK, Kant T, Singh RK. A critical review of recent research on functionally graded plates. Compos Struct 2013;96:833–49.
PDF(5614 KB)

Accesses

Citation

Detail

段落导航
相关文章

/