
表面"彩虹"上的超分辨率光谱位移传感
Lyu Zhou, Nan Zhang, Chang Chieh Hsu, Matthew Singer, Xie Zeng, Yizheng Li, Haomin Song, Josep Jornet, Yun Wu, Qiaoqiang Gan
工程(英文) ›› 2022, Vol. 17 ›› Issue (10) : 75-81.
表面"彩虹"上的超分辨率光谱位移传感
Super-Resolution Displacement Spectroscopic Sensing over a Surface “Rainbow”
高精度的亚波长光波操纵在光谱学、传感和医学成像中可实现令人兴奋的新颖应用。这些应用中理想的目标是可实现光谱信息片上分析的小型化光谱仪。特别地,对于基于成像系统的光谱传感机制,其关键挑战是如何实现精准的空间信息分辨(即波长偏移或生物、化学表面结合引起的空间位移),这类似于超分辨率成像所带来的挑战。本文中,我们报道了一种特殊的可以捕获“彩虹”的超表面,并将其应用于芯片光谱仪和传感器。结合超分辨图像处理,通过低设置4×光学显微镜系统可分辨出等离子体“彩虹”捕获超表面上35 nm范围内共振位置的位移,同时该超表面的面积小至0.002 mm2。这种可实现高效耦合的“彩虹”等离子体共振空间操纵的独特特征为小型化片上光谱分析提供了一个新的平台,其光谱分辨率为0.032 nm波长偏移。通过使用该低设置4×光学显微镜成像系统,我们展示了A549 外泌体的生物传感分辨率为1.92×109个∙mL−1,并使用外泌体表皮生长因子受体(EGFR)的表达值来区分患者样本和健康对照样本,从而展示了一种精确特异性生物/化学传感检测应用的新型片上传感系统。
Subwavelength manipulation of light waves with high precision can enable new and exciting applications in spectroscopy, sensing, and medical imaging. For these applications, miniaturized spectrometers are desirable to enable the on-chip analysis of spectral information. In particular, for imaging-based spectroscopic sensing mechanisms, the key challenge is to determine the spatial-shift information accurately (i.e., the spatial displacement introduced by wavelength shift or biological or chemical surface binding), which is similar to the challenge presented by super-resolution imaging. Here, we report a unique “rainbow” trapping metasurface for on-chip spectrometers and sensors. Combined with super-resolution image processing, the low-setting 4× optical microscope system resolves a displacement of the resonant position within 35 nm on the plasmonic rainbow trapping metasurface with a tiny area as small as 0.002 mm2. This unique feature of the spatial manipulation of efficiently coupled rainbow plasmonic resonances reveals a new platform for miniaturized on-chip spectroscopic analysis with a spectral resolution of 0.032 nm in wavelength shift. Using this low-setting 4× microscope imaging system, we demonstrate a biosensing resolution of 1.92 × 109 exosomes per milliliter for A549-derived exosomes and distinguish between patient samples and healthy controls using exosomal epidermal growth factor receptor (EGFR) expression values, thereby demonstrating a new on-chip sensing system for personalized accurate bio/chemical sensing applications.
“彩虹”捕获 / 超表面 / 表面等离子体激元 / 超分辨位移 / 片上生物传感
Rainbow trapping / Metasurface / Surface plasmon polaritons / Super-resolution displacement / On-chip biosensing
[1] |
Tsakmakidis KL, Hess O, Boyd RW, Zhang X. Ultraslow waves on the nanoscale. Science 2017;358(6361):eaan5196.
|
[2] |
Gao Z, Wu L, Gao F, Luo Y, Zhang B. Spoof plasmonics: from metamaterial concept to topological description. Adv Mater 2018;30(31):1706683.
|
[3] |
Tsakmakidis KL, Pickering TW, Hamm JM, Page AF, Hess O. Completely stopped and dispersionless light in plasmonic waveguides. Phys Rev Lett 2014;112 (16):167401.
|
[4] |
Baba T. Slow light in photonic crystals. Nat Photonics 2008;2(8):465–73.
|
[5] |
Tsakmakidis KL, Boardman AD, Hess O. ‘Trapped rainbow’ storage of light in metamaterials. Nature 2007;450(7168):397–401.
|
[6] |
Gan Q, Fu Z, Ding YJ, Bartoli FJ. Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys Rev Lett 2008;100 (25):256803.
|
[7] |
Gan Q, Ding YJ, Bartoli FJ. ‘‘Rainbow” trapping and releasing at telecommunication wavelengths. Phys Rev Lett 2009;102(5):056801.
|
[8] |
Gan Q, Gao Y, Wagner K, Vezenov D, Ding YJ, Bartoli FJ. Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings. Proc Natl Acad Sci USA 2011;108(13):5169–73.
|
[9] |
Gan Q, Bartoli FJ. Surface dispersion engineering of planar plasmonic chirped grating for complete visible rainbow trapping. Appl Phys Lett 2011;98 (25):251103.
|
[10] |
Leitis A, Tseng ML, John-Herpin A, Kivshar YS, Altug H. Wafer-scale functional metasurfaces for mid-infrared photonics and biosensing. Adv Mater 2021;33 (43):2102232.
|
[11] |
Tsakmakidis KL, Baskourelos K, Stefan´ ski T. Topological, nonreciprocal, and multiresonant slow light beyond the time-bandwidth limit. Appl Phys Lett 2021;119(19):190501.
|
[12] |
Tsakmakidis KL, Hess O. Extreme control of light in metamaterials: complete and loss-free stopping of light. Phys B 2021;407(20):4066–9.
|
[13] |
Li J, Yu P, Zhang S, Liu N. Electrically-controlled digital metasurface device for light projection displays. Nat Commun 2020;11(1):3574.
|
[14] |
Zhirihin DV, Kivshar YS. Topological photonics on a small scale. Small Sci 2021;1(12):2100065.
|
[15] |
Yang Z, Albrow-Owen T, Cai W, Hasan T. Miniaturization of optical spectrometers. Science 2021;371(6528):eabe0722.
|
[16] |
Yang Z, Albrow-Owen T, Cui H, Alexander-Webber J, Gu F, Wang X, et al. Single-nanowire spectrometers. Science 2019;365(6457):1017–20.
|
[17] |
Xu T, Wu YK, Luo X, Guo LJ. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat Commun 2010;1(1):59.
|
[18] |
Chen L, Wang GP, Gan Q, Bartoli FJ. Trapping of surface-plasmon polaritons in a graded Bragg structure: frequency-dependent spatially separated localization of the visible spectrum modes. Phys Rev B 2009;80(16):161106.
|
[19] |
Chen L, Wang GP, Gan Q, Bartoli FJ. Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies. Appl Phys Lett 2010;97 (15):153115.
|
[20] |
Hu H, Ji D, Zeng X, Liu K, Gan Q. Rainbow trapping in hyperbolic metamaterial waveguide. Sci Rep 2013;3(1):1249.
|
[21] |
Jang MS, Atwater H. Plasmonic rainbow trapping structures for light localization and spectrum splitting. Phys Rev Lett 2011;107(20):207401.
|
[22] |
Ouyang L, Meyer-Zedler T, See KM, Chen WL, Lin FC, Akimov D, et al. Spatially resolving the enhancement effect in surface-enhanced coherent anti-Stokes Raman scattering by plasmonic Doppler gratings. ACS Nano 2021;15 (1):809–18.
|
[23] |
Lin FC, See KM, Ouyang L, Huang YX, Chen YJ, Popp J, et al. Designable spectrometer-free index sensing using plasmonic Doppler gratings. Anal Chem 2019;91(15):9382–7.
|
[24] |
See KM, Lin FC, Huang JS. Design and characterization of a plasmonic Doppler grating for azimuthal angle-resolved surface plasmon resonances. Nanoscale 2017;9(30):10811–9.
|
[25] |
Triggs GJ, Wang Y, Reardon CP, Fischer M, Evans GJO, Krauss TF. Chirped guided-mode resonance biosensor. Optica 2017;4(2):229–34.
|
[26] |
Tittl A, Leitis A, Liu M, Yesilkoy F, Choi DY, Neshev DN, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 2018;360 (6393):1105–9.
|
[27] |
Yesilkoy F, Arvelo ER, Jahani Y, Liu M, Tittl A, Cevher V, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat Photonics 2019;13(6):390–6.
|
[28] |
Leitis A, Tittl A, Liu M, Lee BH, Gu MB, Kivshar YS, et al. Angle-multiplexed alldielectric metasurfaces for broadband molecular fingerprint retrieval. Sci Adv 2019;5(5):eaaw2871.
|
[29] |
Jahani Y, Arvelo ER, Yesilkoy F, Koshelev K, Cianciaruso C, De Palma M, et al. Imaging-based spectrometer-less optofluidic biosensors based on dielectric metasurfaces for detecting extracellular vesicles. Nat Commun 2021;12 (1):3246.
|
[30] |
Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Mater 2010;9 (3):193–204.
|
[31] |
Koenderink AF, Alù A, Polman A. Nanophotonics: shrinking light-based technology. Science 2015;348(6234):516–21.
|
[32] |
Oh SH, Altug H. Performance metrics and enabling technologies for nanoplasmonic biosensors. Nat Commun 2018;9(1):5263.
|
[33] |
Gould TJ, Hess ST, Bewersdorf J. Optical nanoscopy: from acquisition to analysis. Annu Rev Biomed Eng 2012;14(1):231–54.
|
[34] |
Mejía-Salazar JR, Oliveira Jr ON. Plasmonic biosensing. Chem Rev 2018;118 (20):10617–25.
|
[35] |
Gao Y, Xin Z, Zeng B, Gan Q, Cheng X, Bartoli FJ. Plasmonic interferometric sensor arrays for high-performance label-free biomolecular detection. Lab Chip 2013;13(24):4755–64.
|
[36] |
Gao Y, Gan Q, Xin Z, Cheng X, Bartoli FJ. Plasmonic Mach–Zehnder interferometer for ultrasensitive on-chip biosensing. ACS Nano 2011;5 (12):9836–44.
|
[37] |
Small A, Stahlheber S. Fluorophore localization algorithms for super-resolution microscopy. Nat Methods 2014;11(3):267–79.
|
[38] |
Pertsinidis A, Zhang Y, Chu S. Subnanometre single-molecule localization, registration and distance measurements. Nature 2010;466(7306):647–51.
|
[39] |
Qu X, Wu D, Mets L, Scherer NF. Nanometer-localized multiple singlemolecule fluorescence microscopy. Proc Natl Acad Sci USA 2004;101 (31):11298–303.
|
[40] |
Ocean Optics, Inc. Jaz installation and operation manual. Dunedin: Ocean Optics, Inc.; 2010.
|
[41] |
Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 2012;1820(7):940–8.
|
[42] |
Yamashita T, Kamada H, Kanasaki S, Maeda Y, Nagano K, Abe Y, et al. Epidermal growth factor receptor localized to exosome membranes as a possible biomarker for lung cancer diagnosis. Pharmazie 2013;68(12):969–73.
|
[43] |
Jakobsen KR, Paulsen BS, Bæk R, Varming K, Sorensen BS, Jørgensen MM. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles 2015;4(1):26659.
|
[44] |
Sandfeld-Paulsen B, Aggerholm-Pedersen N, Baek R, Jakobsen KR, Meldgaard P, Folkersen BH, et al. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol Oncol 2016;10(10):1595–602.
|
[45] |
Clark DJ, Fondrie WE, Yang A, Mao L. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes. J Proteomics 2016;133:161–9.
|
[46] |
Liang Y, Lehrich BM, Zheng S, Lu M. Emerging methods in biomarker identification for extracellular vesicle-based liquid biopsy. J Extracell Vesicles 2021;10(7):e12090.
|
[47] |
Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, et al. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc Natl Acad Sci USA 2011;108(29):11784–9.
|
[48] |
Zhu H, Isikman SO, Mudanyali O, Greenbaum A, Ozcan A. Optical imaging techniques for point-of-care diagnostics. Lab Chip 2013;13(1):51–67.
|
[49] |
Lindquist NC, Johnson TW, Norris DJ, Oh SH. Monolithic integration of continuously tunable plasmonic nanostructures. Nano Lett 2011;11 (9):3526–30.
|
[50] |
Ballard Z, Brown C, Madni AM, Ozcan A. Machine learning and computationenabled intelligent sensor design. Nat Mach Intell 2021;3(7):556–65.
|
/
〈 |
|
〉 |