
可自供能感知液滴撞击的3D打印超疏水磁性器件
Xuan Zhang, Qi Wang, Ruiping Zou, Bo Song, Chunze Yan, Yusheng Shi, Bin Su
工程(英文) ›› 2022, Vol. 15 ›› Issue (8) : 197-206.
可自供能感知液滴撞击的3D打印超疏水磁性器件
3D-Printed Superhydrophobic and Magnetic Device That Can Self-Powered Sense A Tiny Droplet Impact
三维(3D)打印的软磁结构在工程和材料领域已引起广泛关注和研究。这种结构驱动形状改变的力会导致磁场分布发生变化,表明这种结构具有将机械能转化为电能的能力。在本文的研究工作中,通过整合两种3D打印方法,制造了一种具有柔性超疏水和磁性的器件。3D打印磁性器件(3DMD)在连续滴水时,表现出具有长期稳定的力电转换能力,输出电流比现有文献记录的输出电流高。结合麦克斯韦数值仿真,研究了3DMD的力电转换机理,进而指导了各种参数的调控。此外,通过连续的雨水收集,三个集成的3DMD点亮了一个商用发光二极管(LED)。这种结合了能量转换的组合型设计有望推动 3D打印领域的发展。
Three-dimensional (3D)-printed magnetic soft architectures have attracted extensive attention and research from the engineering and material fields. The force-driven shape deformation of such architectures causes a change in the magnetic field distribution, indicating the capability to convert mechanical energy to electricity. Herein, we fabricate a flexible superhydrophobic and magnetic device by integrating two kinds of 3D printing approaches. The 3D-printed magnetic device (3DMD) exhibits a long-term stable mechanoelectrical conversion capacity under consecutive water droplet dripping. The output current of the 3DMD is higher than that of records in the existing literature. Combined with Maxwell numerical simulation, the mechanoelectrical conversion mechanism of the 3DMD is investigated, further guiding regulation of the diverse parameters. Moreover, three 3DMDs are integrated to light up a commercial light-emitting diode (LED) by a stream of collected rainwater. Such a combined design incorporating energy conversion is believed to promisingly motive advances in the 3D printing field.
3D printing / Self-powered sensing / Magnetic Waterdrops
[1] |
Kotz F, Risch P, Helmer D, Rapp BE. High-performance materials for 3D printing in chemical synthesis applications. Adv Mater 2019;31(26):1805982.
|
[2] |
Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 3D printing of shape memory polymers for flexible electronic devices. Adv Mater 2016; 28(22):4449–54.
|
[3] |
Yang Y, Li X, Zheng X, Chen Z, Zhou Q, Chen Y. 3D-printed biomimetic superhydrophobic structure for microdroplet manipulation and oil/water separation. Adv Mater 2018;30(9):1704912.
|
[4] |
Davoodi E, Fayazfar H, Liravi F, Jabari E, Toyserkani E. Drop-on-demand highspeed 3D printing of flexible milled carbon fiber/silicone composite sensors for wearable biomonitoring devices. Addit Manuf 2020;32:101016.
|
[5] |
Kalkal A, Kumar S, Kumar P, Pradhan R, Willander M, Packirisamy G, et al. Recent advances in 3D printing technologies for wearable (bio)sensors. Addit Manuf 2021;46:102088.
|
[6] |
Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 2014;26(19):3124–30.
|
[7] |
Gul JZ, Sajid M, Rehman MM, Siddiqui GU, Shah I, Kim KH, et al. 3D printing for soft robotics—a review. Sci Technol Adv Mater 2018;19(1):243–62.
|
[8] |
Cooperstein I, Sachyani-Keneth E, Shukrun-Farrell E, Rosental T, Wang X, Kamyshny A, et al. Hybrid materials for functional 3D printing. Adv Mater Interfaces 2018;5(22):1800996.
|
[9] |
Podstawczyk D, Nizioł M, Szymczyk P, Wis´niewski P, Guiseppi-Elie A. 3D printed stimuli-responsive magnetic nanoparticle embedded alginatemethylcellulose hydrogel actuators. Addit Manuf 2020;34:101275.
|
[10] |
Chin SY, Poh YC, Kohler AC, Compton JT, Hsu LL, Lau KM, et al. Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. Sci Rob 2017;2(2):eaah6451.
|
[11] |
Marco C, Alcântara CCJ, Kim S, Briatico F, Kadioglu A, Bernardis G, et al. Indirect 3D and 4D printing of soft robotic microstructures. Adv Mater Technol 2019; 4(9):1900332.
|
[12] |
Zhang J, Zhao S, Zhu M, Zhu Y, Zhang Y, Liu Z, et al. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B 2014;2(43):7583–95.
|
[13] |
Kokkinis D, Schaffner M, Studart AR. Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 2015;6:8643.
|
[14] |
Huber C, Abert C, Bruckner F, Groenefeld M, Muthsam O, Schuschnigg S, et al. 3D print of polymer bonded rare-earth magnets, and 3D magnetic field scanning with an end-user 3D printer. Appl Phys Lett 2016;109(16):162401.
|
[15] |
Martin JJ, Fiore BE, Erb RM. Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun 2015;6:8641.
|
[16] |
Ji Z, Yan C, Yu B, Wang X, Zhou F. Multimaterials 3D printing for free assembly manufacturing of magnetic driving soft actuator. Adv Mater Interfaces 2017;4(22):1700629.
|
[17] |
Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018;558(7709):274–9.
|
[18] |
Qi S, Guo H, Fu J, Xie Y, Zhu M, Yu M. 3D printed shape-programmable magneto-active soft matter for biomimetic applications. Compos Sci Technol 2020;188:107973.
|
[19] |
Wu H, Wang O, Tian Y, Wang M, Su B, Yan C, et al. Selective laser sinteringbased 4D printing of magnetism-responsive grippers. ACS Appl Mater Interfaces 2021;13(11):12679–88.
|
[20] |
Ma Z, Ai J, Shi Y, Wang K, Su B. A superhydrophobic droplet-based magnetoelectric hybrid system to generate electricity and collect water simultaneously. Adv Mater 2020;32(50):2006839.
|
[21] |
Zhang X, Ai J, Ma Z, Du Z, Chen D, Zou R, et al. Magnetoelectric soft composites with a self-powered tactile sensing capacity. Nano Energy 2020;69:104391.
|
[22] |
Zhang X, Ai J, Zou R, Su B. Compressible and stretchable magnetoelectric sensors based on liquid metals for highly sensitive, self-powered respiratory monitoring. ACS Appl Mater Interfaces 2021;13(13):15727–37.
|
[23] |
Hong H, Wei J, Yuan Y, Chen FP, Wang J, Qu X, et al. A novel composite coupled hardness with flexibleness—polylactic acid toughen with thermoplastic polyurethane. J Appl Polym Sci 2011;121(2):855–61.
|
[24] |
Boyacioglu S, Kodal M, Ozkoc G. A comprehensive study on shape memory behavior of PEG plasticized PLA/TPU bio-blends. Eur Polym J 2020;122:109372.
|
[25] |
Wu C, Do TT, Tran P. Mechanical properties of PolyJet 3D-printed composites inspired by space-filling peano curves. Polymers 2021;13(20):3516.
|
[26] |
Zhang B, Li S, Hingorani H, Serjouei A, Larush L, Pawar AA, et al. Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. J Mater Chem B 2018;6(20):3246–53.
|
[27] |
Lei Z, Wang Q, Wu P. A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater Horiz 2017;4(4):694–700.
|
[28] |
Fuh YK, Wang BS, Tsai CY. Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Sci Rep 2017;7:6759.
|
[29] |
Haque RI, Chandran O, Lani S, Briand D. Self-powered triboelectric touch sensor made of 3D printed materials. Nano Energy 2018;52:54–62.
|
[30] |
Chen B, Tang W, Jiang T, Zhu L, Chen X, He C, et al. Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy 2018;45:380–9.
|
[31] |
Zhao L, Liu L, Yang X, Hong H, Yang Q, Wang J, et al. Cumulative charging behavior of water droplet driven freestanding triboelectric nanogenerators toward hydrodynamic energy harvesting. J Mater Chem A 2020;8(16):7880–8.
|
[32] |
Yang L, Wang Y, Zhao Z, Guo Y, Chen S, Zhang W, et al. Particle-laden droplet-driven triboelectric nanogenerator for real-time sediment monitoring using a deep learning method. ACS Appl Mater Interfaces 2020;12(34): 38192–201.
|
[33] |
Hu S, Shi Z, Zheng R, Ye W, Gao X, Zhao W, et al. Superhydrophobic liquidsolid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. ACS Appl Mater Interfaces 2020;12(36):40021–30.
|
[34] |
Niu J, Xu W, Tian K, He G, Huang Z, Wang Q. Triboelectric energy harvesting of the superhydrophobic coating from dropping water. Polymers 2020;12(9): 1936.
|
[35] |
Zhou Q, Park JG, Kim KN, Thokchom AK, Bae J, Baik JM, et al. Transparent– flexible–multimodal triboelectric nanogenerators for mechanical energy harvesting and self-powered sensor applications. Nano Energy 2018;48:471–80.
|
[36] |
Su Y, Wen X, Zhu G, Yang J, Chen J, Bai P, et al. Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 2014;9:186–95.
|
[37] |
Su Y, Xie G, Tai H, Li S, Yang B, Wang S, et al. Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination. Nano Energy 2018;47:316–24.
|
[38] |
Wang S, Jiang Y, Tai H, Liu B, Duan Z, Yuan Z, et al. An integrated flexible selfpowered wearable respiration sensor. Nano Energy 2019;63:103829.
|
[39] |
Su Y, Wang J, Wang B, Yang T, Yang B, Xie G, et al. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 2020;14(5):6067–75.
|
[40] |
Su Y, Chen C, Pan H, Yang Y, Chen G, Zhao X, et al. Muscle fibers inspired highperformance piezoelectric textiles for wearable physiological monitoring. Adv Funct Mater 2021;31(19):2010962.
|
[41] |
Su Y, Chen G, Chen C, Gong Q, Xie G, Yao M, et al. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv Mater 2021;33(35): 2101262.
|
[42] |
Su Y, Yang T, Zhao X, Cai Z, Chen G, Yao M, et al. A wireless energy transmission enabled wearable active acetone biosensor for non-invasive prediabetes diagnosis. Nano Energy 2020;74:104941.
|
[43] |
Su Y, Li W, Yuan L, Chen C, Pan H, Xie G, et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 2021;89:106321.
|
[44] |
Kong T, Luo G, Zhao Y, Liu Z. Bioinspired superwettability micro/nanoarchitectures: fabrications and applications. Adv Funct Mater 2019;29(11):1808012.
|
[45] |
Shi J, Wang L, Dai Z, Zhao L, Du M, Li H, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 2018;14(27):1800819.
|
[46] |
Guru BS, Hizirog˘lu HR. Electromagnetic field theory fundamentals. Cambridge: Cambridge University Press; 2005.
|
[47] |
Zhou Y, Zhao X, Xu J, Fang Y, Chen G, Song Y, et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat Mater 2021;20(12):1670–6.
|
/
〈 |
|
〉 |