可自供能感知液滴撞击的3D打印超疏水磁性器件
张璇 , 王琦 , 邹瑞萍 , 宋波 , 闫春泽 , 史玉升 , 苏彬
工程(英文) ›› 2022, Vol. 15 ›› Issue (8) : 197 -206.
可自供能感知液滴撞击的3D打印超疏水磁性器件
3D-Printed Superhydrophobic and Magnetic Device That Can Self-Powered Sense A Tiny Droplet Impact
三维(3D)打印的软磁结构在工程和材料领域已引起广泛关注和研究。这种结构驱动形状改变的力会导致磁场分布发生变化,表明这种结构具有将机械能转化为电能的能力。在本文的研究工作中,通过整合两种3D打印方法,制造了一种具有柔性超疏水和磁性的器件。3D打印磁性器件(3DMD)在连续滴水时,表现出具有长期稳定的力电转换能力,输出电流比现有文献记录的输出电流高。结合麦克斯韦数值仿真,研究了3DMD的力电转换机理,进而指导了各种参数的调控。此外,通过连续的雨水收集,三个集成的3DMD点亮了一个商用发光二极管(LED)。这种结合了能量转换的组合型设计有望推动 3D打印领域的发展。
Three-dimensional (3D)-printed magnetic soft architectures have attracted extensive attention and research from the engineering and material fields. The force-driven shape deformation of such architectures causes a change in the magnetic field distribution, indicating the capability to convert mechanical energy to electricity. Herein, we fabricate a flexible superhydrophobic and magnetic device by integrating two kinds of 3D printing approaches. The 3D-printed magnetic device (3DMD) exhibits a long-term stable mechanoelectrical conversion capacity under consecutive water droplet dripping. The output current of the 3DMD is higher than that of records in the existing literature. Combined with Maxwell numerical simulation, the mechanoelectrical conversion mechanism of the 3DMD is investigated, further guiding regulation of the diverse parameters. Moreover, three 3DMDs are integrated to light up a commercial light-emitting diode (LED) by a stream of collected rainwater. Such a combined design incorporating energy conversion is believed to promisingly motive advances in the 3D printing field.
3D printing / Self-powered sensing / Magnetic Waterdrops
/
| 〈 |
|
〉 |