钠离子电池——碳中和世界的储能技术

Kai Wu, Xinwei Dou, Xinxin Zhang, Chuying Ouyang

工程(英文) ›› 2023, Vol. 21 ›› Issue (2) : 36-38.

PDF(735 KB)
PDF(735 KB)
工程(英文) ›› 2023, Vol. 21 ›› Issue (2) : 36-38. DOI: 10.1016/j.eng.2022.04.011
观点述评

钠离子电池——碳中和世界的储能技术

作者信息 +

The Sodium-Ion Battery: An Energy-Storage Technology for a Carbon-Neutral World

Author information +
History +

引用本文

导出引用
Kai Wu, Xinwei Dou, Xinxin Zhang. 钠离子电池——碳中和世界的储能技术. Engineering. 2023, 21(2): 36-38 https://doi.org/10.1016/j.eng.2022.04.011

参考文献

[1]
Yu Yao YF, Kummer JT. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J Inorg Nucl Chem 1967;29(9):2453–75.
[2]
Delmas C, Braconnier J, Fouassier C, Hagenmuller P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion 1981;3–4:165–9.
[3]
Transport applications [Internet]. Sheffield: Faradion; c2011–2022 [cited 2022 Mar 30]. Available from: https://faradion.co.uk/applications/transportapplications/.
[4]
TIAMAT—powerful, fast charge, enduring cells thanks to sodium-ion [Internet]. Amiens: TIAMAT; c2021 [cited 2022 Mar 30]. Available from: http:// www.tiamat-energy.com/en/.
[5]
Bauer A, Song J, Vail S, Pan W, Barker J, Lu Y. The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv Energy Mater 2018;8(17):1702869.
[6]
Solutions for EV fast charging [Internet]. Santa Clara: Natron Energy; c2012– 2021 [cited 2022 Mar 30]. Available from: https://natron.energy/ev-fastcharging.
[7]
Na-ion [Internet]. Liyang: HiNa BATTERY; c2017 [cited 2022 Mar 30]. Available from: https://www.hinabattery.com/en/index.php?catid=12.
[8]
Coreproducts [Internet]. Shaoxing: NATRIUM; c2017 [cited 2022 Mar 30]. Available from: http://natriumenergy.cn/Content/1984004.html.
[9]
Wang W, Gang Y, Hu Z, Yan Z, Li W, Li Y, et al. Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries. Nat Commun 2020;11(1).
[10]
Sodium-ion battery launch event [Internet]. Ningde: Natron Energy; 2021 Jul 29 [cited 2022 Mar 30]. Available from: https://www.catl.com/ technologybrand/6251.html.
[11]
Vaalma C, Buchholz D, Weil M, Passerini S. A cost and resource analysis of sodium-ion batteries. Nat Rev Mater 2018;3(4):18013.
[12]
Peters J, Buchholz D, Weil M, Passerini S. Life cycle assessment of sodium-ion batteries. Energy Environ SCI 2016;9:1744.
[13]
Glasgow Climate Pact. Proposal by the President [Internet]. New York City: United Nations; 2021 Jul 29 [cited 2022 Mar 30]. Available from: https:// unfccc.int/documents/311127.
[14]
European Commission. Proposal for a regulation of the European Parliament and of the Council concerning batteries and waste batteries, repealing Directive 2006/66/EC and amending Regulation (EU) No 2019/1020. Brussels, COM 798/3 (2020).
[15]
China Society of Automotive Engineers. Energy-saving and new energy vehicle technology roadmap 2.0. Reports. Beijing: China Society of Automotive Engineers; 2020 Oct.
[16]
Babu CS, Carmay L. Theory of ionic hydration: insights from molecular dynamics simulations and experiment. J Phys Chem B 1999;103(37):7958–68.
PDF(735 KB)

Accesses

Citation

Detail

段落导航
相关文章

/