近三十年来中国城市土壤有机碳变化对实现碳中和的启示

张真瑞, 夏星辉, 杨志峰

工程(英文) ›› 2023, Vol. 28 ›› Issue (9) : 11-15.

PDF(1484 KB)
PDF(1484 KB)
工程(英文) ›› 2023, Vol. 28 ›› Issue (9) : 11-15. DOI: 10.1016/j.eng.2022.04.014
观点述评

近三十年来中国城市土壤有机碳变化对实现碳中和的启示

作者信息 +

Soil Organic Carbon Changes in City Areas of China Over the Past Three Decades: Implications for Achieving Carbon Neutrality

Author information +
History +

引用本文

导出引用
张真瑞, 夏星辉, 杨志峰. 近三十年来中国城市土壤有机碳变化对实现碳中和的启示. Engineering. 2023, 28(9): 11-15 https://doi.org/10.1016/j.eng.2022.04.014

参考文献

[1]
Intergovernmental Panel on Climate Change. Climate change 2021: the physical science basis. Cambridge University Press, Cambridge (2021)
[2]
H. Dai, Y. Su, L. Kuang, J. Liu, D. Gu, C. Zou. Contemplation on China’s energy-development strategies and initiatives in the context of its carbon neutrality goal. Engineering, 7 (12) (2021), pp. 1684-1687
[3]
E. Lugato, J.M. Lavallee, M.L. Haddix, P. Panagos, M.F. Cotrufo. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat Geosci, 14 (5) (2021), pp. 295-300. DOI: 10.1038/s41561-021-00744-x
[4]
X. Zhang, M. Brandt, X. Tong, P. Ciais, Y. Yue, X. Xiao, et al. A large but transient carbon sink from urbanization and rural depopulation in China. Nat Sustain, 5 (4) (2022), pp. 321-328. DOI: 10.1038/s41893-021-00843-y
[5]
X. Liu, F. Pei, Y. Wen, X. Li, S. Wang, C. Wu, et al. Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat Commun, 10 (1) (2019), p. 5558
[6]
Y. Sun, S. Xie, S. Zhao. Valuing urban green spaces in mitigating climate change: a city-wide estimate of aboveground carbon stored in urban green spaces of China’s capital. Glob Change Biol, 25 (5) (2019), pp. 1717-1732. DOI: 10.1111/gcb.14566
[7]
Z. Wei, S.H. Wu, S.L. Zhou, J.T. Li, Q.G. Zhao. Soil organic carbon transformation and related properties in urban soil under impervious surfaces. Pedosphere, 24 (1) (2014), pp. 56-64
[8]
S. Zhao, S. Liu, D. Zhou. Prevalent vegetation growth enhancement in urban environment. Proc Natl Acad Sci USA, 113 (22) (2016), pp. 6313-6318. DOI: 10.1073/pnas.1602312113
[9]
Q. Li, A. Li, T. Dai, Z. Fan, Y. Luo, S. Li, et al. Depth-dependent soil organic carbon dynamics of croplands across the Chengdu Plain of China from the 1980s to the 2010s. Glob Change Biol, 26 (7) (2020), pp. 4134-4146. DOI: 10.1111/gcb.15110
[10]
National Bureau of Statistics of China. Chinese statistical yearbook. China Statistics Press, Beijing (2020)
[11]
S. Chen, W. Wang, W. Xu, Y. Wang, H. Wan, D. Chen, et al. Plant diversity enhances productivity and soil carbon storage. Proc Natl Acad Sci USA, 115 (16) (2018), pp. 4027-4032. DOI: 10.1073/pnas.1700298114
[12]
Z. Luo, W. Feng, Y. Luo, J. Baldock, E. Wang. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob Change Biol, 23 (10) (2017), pp. 4430-4439. DOI: 10.1111/gcb.13767
[13]
F. Lu, H. Hu, W. Sun, J. Zhu, G. Liu, W. Zhou, et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc Natl Acad Sci USA, 115 (16) (2018), pp. 4039-4044. DOI: 10.1073/pnas.1700294115
[14]
B. Yan, Q. Lu, J. He, Y. Qi, G. Fu, N. Xiao, et al. Composition and interaction frequencies in soil bacterial communities change in association with urban park age in Beijing. Pedobiologia, 84 (2021), p. 150699
[15]
S. Van, A. Cheremisin, A. Chusov, O. Zueva, A. Dolgopolov, E. Nikulina, et al. New architectural and planning solutions as a mean of ecological modernization and reconstruction of urban environment (on the example of Shanghai city, China). IOP Conf Ser Earth Environ Sci, 390 (1) (2019), p. 012011. DOI: 10.1088/1755-1315/390/1/012011
[16]
J.B. Grace, T.M. Anderson, E.W. Seabloom, E.T. Borer, P.B. Adler, W.S. Harpole, et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529 (7586) (2016), pp. 390-393. DOI: 10.1038/nature16524
[17]
S.Y. Searle, M.H. Turnbull, N.T. Boelman, W.S. Schuster, D. Yakir, K.L. Griffin. Urban environment of New York City promotes growth in northern red oak seedlings. Tree Physiol, 32 (4) (2012), pp. 389-400. DOI: 10.1093/treephys/tps027
[18]
S.A. Schweizer, F.B. Bucka, M. Graf-Rosenfellner, I. Kögel-Knabner. Soil microaggregate size composition and organic matter distribution as affected by clay content. Geoderma, 355 (2019), p. 113901
[19]
S. Luo, Q. Mao, K. Ma. Comparison on soil carbon stocks between urban and suburban topsoil in Beijing. China Chin Geogr Sci, 24 (5) (2014), pp. 551-561. DOI: 10.1007/s11769-014-0709-y
[20]
National Bureau of Statistics Ministry of Ecology and Environment. China statisticak yearbook on environment. China Statistics Press, Beijing (2018)
[21]
G. Wang, X. Xia, S. Liu, L. Zhang, S. Zhang, J. Wang, et al. Intense methane ebullition from urban inland waters and its significant contribution to greenhouse gas emissions. Water Res, 189 (2021), p. 116654
[22]
G. Wang, X. Xia, S. Liu, S. Zhang, W. Yan, W.H. McDowell. Distinctive patterns and controls of nitrous oxide concentrations and fluxes from urban inland waters. Environ Sci Technol, 55 (12) (2021), pp. 8422-8431. DOI: 10.1021/acs.est.1c00647
PDF(1484 KB)

Accesses

Citation

Detail

段落导航
相关文章

/