
一种作为主动控制宽带吸波器的热可调超材料
Xiao-Chang Xing, Yang Cao, Xiao-Yong Tian, Lingling Wu
工程(英文) ›› 2023, Vol. 20 ›› Issue (1) : 143-152.
一种作为主动控制宽带吸波器的热可调超材料
A Thermo-Tunable Metamaterial as an Actively Controlled Broadband Absorber
近年来,超材料因其操纵电磁波的强大能力而受到越来越多的关注。然而,大多数先前报道的超材料无法动态调控超宽波段电磁波。在本文中,我们提出了一种使用具有不同相变温度的石蜡基复合材料(PDCs)来实现热可调谐宽带吸波的超材料结构体(T-TBM)。通过在不同相变温度下控制PD-Cs 的固液态,实现了从低频到高频的T-TBM反射损耗峰值的动态调控。T-TBM可以改变吸收峰值带宽(反射损耗值小于−30 dB),并且通过调整T-TBM 的温度依然满足宽带吸波(反射损耗值小于−10 dB)。实验结果表明,T-TBM中PD-Cs的相变恒温效应为在不同热条件下主动控制电磁波吸收响应提供了时间窗口。该器件在电磁吸收、智能超材料、多功能结构器件等领域具有广阔的应用前景。
Metamaterials have attracted increasing attention in recent years due to their powerful abilities in manipulating electromagnetic (EM) waves. However, most previously reported metamaterials are unable to actively control full-band EM waves. In this paper, we propose a thermo-tunable broadband metamaterial (T-TBM) using paraffin-based composites (PD-Cs) with different phase transition temperatures. Active control of the T-TBM reflection loss peaks from low to high frequency is realized by manipulating the solid–liquid state of the PD-Cs at different phase transition temperatures. The absorption peak bandwidth (where the reflection loss value is less than −30 dB) can be changed, while the broad bandwidth absorption (where the reflection loss value is less than −10 dB) is satisfied by adjusting the temperature of the T-TBM. It is shown that the stagnation of the phase transition temperature of the PD-Cs in the T-TBM provides a time window for actively controlling the EM wave absorption response under different thermal conditions. The device has a broad application prospect in the fields of EM absorption, intelligent metamaterials, multifunctional structural devices, and more.
Metamaterials / Active control / Thermally tunable / Broadband absorption
[1] |
Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science 2006;312(5781):1780–2.
|
[2] |
Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater 2012;11(11):917–24.
|
[3] |
Edwards B, Alù A, Silveirinha MG, Engheta N. Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett 2009;103(15):153901.
|
[4] |
Cui TJ. Microwave metamaterials. Natl Sci Rev 2018;5(2):134–6.
|
[5] |
Díaz-Rubio A, Asadchy VS, Elsakka A, Tretyakov SA. From the generalized reflection law to the realization of perfect anomalous reflectors. Sci Adv 2017;3 (8):e1602714.
|
[6] |
Liu L, Zhang X, Kenney M, Su X, Xu N, Ouyang C, et al. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv Mater 2014;26 (29):5031–6.
|
[7] |
Grady NK, Heyes JE, Chowdhury DR, Zeng Y, Reiten MT, Azad AK, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 2013;340(6138):1304–7.
|
[8] |
Pfeiffer C, Grbic A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys Rev Lett 2013;110(19):197401.
|
[9] |
Zhang X, Tian Z, Yue W, Gu J, Zhang S, Han J, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities. Adv Mater 2013;25(33):4567–72.
|
[10] |
Huang L, Chen X, Mühlenbernd H, Li G, Bai B, Tan Q, et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett 2012;12 (11):5750–5.
|
[11] |
Arbabi A, Arbabi E, Horie Y, Kamali SM, Faraon A. Planar metasurface retroreflector. Nat Photonics 2017;11(7):415–20.
|
[12] |
Lin Z, Xu Z, Liu P, Liang Z, Lin YS. Polarization-sensitive terahertz resonator using asymmetrical F-shaped metamaterial. Opt Laser Technol 2020;121:105826.
|
[13] |
Yao D, Yan K, Liu X, Liao S, Yu Y, Lin YS. Tunable terahertz metamaterial by using asymmetrical double split-ring resonators (ADSRRs). OSA Contin 2018;1 (2):349–57.
|
[14] |
Yin M, Tian XY, Han HX, Li DC. Free-space carpet-cloak based on gradient index photonic crystals in metamaterial regime. Appl Phys Lett 2012;100(12):124101.
|
[15] |
Han H, Wu L, Tian X, Li D, Yin M, Wang Y. Broadband gradient refractive index planar lens based on a compound liquid medium. J Appl Phys 2012;112 (11):114913.
|
[16] |
Lv H, Tian X, Wang MY, Li D. Vibration energy harvesting using a phononic crystal with point defect states. Appl Phys Lett 2013;102(3):034103.
|
[17] |
Feng M, Tian X, Wang J, Yin M, Qu S, Li D. Broadband abnormal reflection based on a metal-backed gradient index liquid slab: an alternative to metasurfaces. J Phys D Appl Phys 2015;48(24):245501.
|
[18] |
Guo S, Hu C, Zhang H. Unidirectional ultrabroadband and wide-angle absorption in graphene-embedded photonic crystals with the cascading structure comprising the Octonacci sequence. J Opt Soc Am B 2020;37 (9):2678–87.
|
[19] |
Zhang HF, Zhang H, Yao Y, Yang J, Liu JX. A band enhanced plasma metamaterial absorber based on triangular ring-shaped resonators. IEEE Photonics J 2018;10(4):1–10.
|
[20] |
Yin L, Doyhamboure-Fouquet J, Tian X, Li D. Design and characterization of radar absorbing structure based on gradient-refractive-index metamaterials. Compos Part B 2018;132:178–87.
|
[21] |
Tao Z, Wan X, Pan BC, Cui TJ. Reconfigurable conversions of reflection, transmission, and polarization states using active metasurface. Appl Phys Lett 2017;110(12):121901.
|
[22] |
Liberal I, Li Y, Engheta N. Reconfigurable epsilon-near-zero metasurfaces via photonic doping. Nanophotonics 2018;7(6):1117–27.
|
[23] |
Yao Y, Shankar R, Kats MA, Song Y, Kong J, Loncar M, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators. Nano Lett 2014;14(11):6526–32.
|
[24] |
Hu N, Zhang J, Zha S, Liu C, Liu H, Liu P. Design of a multilayer broadband switchable absorber based on semiconductor switch. IEEE Antennas Wirel Propag Lett 2019;18(2):373–7.
|
[25] |
Wu Z, Chen X, Zhang Z, Heng L, Wang S, Zou Y. Design and optimization of a flexible water-based microwave absorbing metamaterial. Appl Phys Express 2019;12(5):057003.
|
[26] |
Jeong H, Lim S. Broadband frequency-reconfigurable metamaterial absorber using switchable ground plane. Sci Rep 2018;8(1):9226.
|
[27] |
Xing X, Tian X, Jia X, Li D. Reconfigurable liquid electromagnetic metamaterials driven by magnetic fields. Appl Phys Express 2021;14(4):041002.
|
[28] |
Liu X, Padilla WJ. Dynamic manipulation of infrared radiation with MEMS metamaterials. Adv Opt Mater 2013;1(8):559–62.
|
[29] |
Liu M, Susli M, Silva D, Putrino G, Kala H, Fan S, et al. Ultrathin tunable terahertz absorber based on MEMS-driven metamaterial. Microsyst Nanoeng 2017;3:17033.
|
[30] |
Long L, Taylor S, Ying X, Wang L. Thermally-switchable spectrally-selective infrared metamaterial absorber/emitter by tuning magnetic polariton with a phase-change VO2 layer. Mater Today Energy 2019;13:214–20.
|
[31] |
Ding F, Zhong S, Bozhevolnyi SI. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies. Adv Opt Mater 2018;6(9):1701204.
|
[32] |
Komar A, Paniagua-Domínguez R, Miroshnichenko A, Yu YF, Kivshar YS, Kuznetsov AI, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces. ACS Photonics 2018;5(5):1742–8.
|
[33] |
Jeong H, Park JH, Moon YH, Baek CW, Lim S. Thermal frequency reconfigurable electromagnetic absorber using phase change material. Sensors 2018;18 (10):3506.
|
[34] |
Wang L, Xia D, Fu Q, Wang Y, Ding X, Yang B. Thermally tunable ultra-thin metamaterial absorber at P band. J Electromagn Waves Appl 2019;33 (11):1406–15.
|
[35] |
Shen Y, Zhang J, Pang Y, Zheng L, Wang J, Ma H, et al. Thermally tunable ultrawideband metamaterial absorbers based on three-dimensional watersubstrate construction. Sci Rep 2018;8(1):4423.
|
[36] |
Pang Y, Wang J, Cheng Q, Xia S, Zhou XY, Xu Z, et al. Thermally tunable watersubstrate broadband metamaterial absorbers. Appl Phys Lett 2017;110 (10):104103.
|
[37] |
Wu F, Xia Y, Sun M, Xie A. Two-dimensional (2D) few-layers WS2 nanosheets: an ideal nanomaterials with tunable electromagnetic absorption performance. Appl Phys Lett 2018;113(5):052906.
|
[38] |
Liu W, Tan S, Yang Z, Ji G. Hollow graphite spheres embedded in porous amorphous carbon matrices as lightweight and low-frequency microwave absorbing material throughmodulating dielectric loss. Carbon 2018;138:143–53.
|
[39] |
Wang XX, Shu JC, Cao WQ, Zhang M, Yuan J, Cao MS. Eco-mimetic nanoarchitecture for green EMI shielding. Chem Eng J 2019;369:1068–77.
|
[40] |
Rozanov KN. Ultimate thickness to bandwidth ratio of radar absorbers. IEEE Trans Antenn Propag 2000;48(8):1230–4.
|
[41] |
Jia X, Li Q, Ao C, Hu R, Xia T, Xue Z, et al. High thermal conductive shapestabilized phase change materials of polyethylene glycol/boron nitride@chitosan composites for thermal energy storage. Compos Part A 2020;129:105710.
|
/
〈 |
|
〉 |