基于LiNbO3/SiO2/SiC异质结构实现44 GHz超高频声表面波谐振器

Jian Zhou, Dinghong Zhang, Yanghui Liu, Fengling Zhuo, Lirong Qian, Honglang Li, Yong-Qing Fu, Huigao Duan

工程(英文) ›› 2023, Vol. 20 ›› Issue (1) : 112-119.

PDF(3899 KB)
PDF(3899 KB)
工程(英文) ›› 2023, Vol. 20 ›› Issue (1) : 112-119. DOI: 10.1016/j.eng.2022.05.003
研究论文
Article

基于LiNbO3/SiO2/SiC异质结构实现44 GHz超高频声表面波谐振器

作者信息 +

Record-Breaking Frequency of 44 GHz Based on the Higher Order Mode of Surface Acoustic Waves with LiNbO3/SiO2/SiC Heterostructures

Author information +
History +

摘要

声表面波(SAW)技术广泛应用于无线通信、传感器、微流体、光子与量子信息通信等领域。然而,受限于制造技术的发展,SAW器件的频率通常在几个吉赫(GHz)以内,严重限制了SAW器件在5G通信、高精度传感、光子与量子控制中的应用。针对上述关键问题,本文提出将极端纳米制造技术与LiNbO3/SiO2/SiC异质结构衬底相结合的策略,成功制备出波长为160 nm的超高频SAW器件,其高阶模态谐振频率高达约44 GHz,获得的机电耦合系数高达15.7%。基于LiNbO3/SiO2/SiC 异质结构衬底的超高频SAW呈现出多种模态,理论仿真分析确定了高阶声波模态的波模态。进行了超高频SAW微质量传感应用研究,其最高质量灵敏度高达33151.9 MHz⋅mm2⋅μg−1,比频率为978 MHz的传统SAW器件质量灵敏度高4000 倍,是传统石英微天平(QCM)器件质量灵敏度的1011倍。

Abstract

Surface acoustic wave (SAW) technology has been extensively explored for wireless communication, sensors, microfluidics, photonics, and quantum information processing. However, due to fabrication issues, the frequencies of SAW devices are typically limited to within a few gigahertz, which severely restricts their applications in 5G communication, precision sensing, photonics, and quantum control. To solve this critical problem, we propose a hybrid strategy that integrates a nanomanufacturing process (i.e., nanolithography) with a LiNbO3/SiO2/SiC heterostructure and successfully achieve a record-breaking frequency of about 44 GHz for SAW devices, in addition to large electromechanical coupling coefficients of up to 15.7%. We perform a theoretical analysis and identify the guided higher order wave modes generated on these slow-on-fast SAW platforms. To demonstrate the superior sensing performance of the proposed ultra-high-frequency SAW platforms, we perform micro-mass sensing and obtain an extremely high sensitivity of approximately 33151.9 MHz·mm2·μg−1, which is about 1011 times higher than that of a conventional quartz crystal microbalance (QCM) and about 4000 times higher than that of a conventional SAW device with a frequency of 978 MHz.

关键词

超高频 / 声表面波 / 高阶声波模态 / 高灵敏度

Keywords

Ultra-high frequency / SAW / Higher order mode / Hypersensitive detection

引用本文

导出引用
Jian Zhou, Dinghong Zhang, Yanghui Liu. 基于LiNbO3/SiO2/SiC异质结构实现44 GHz超高频声表面波谐振器. Engineering. 2023, 20(1): 112-119 https://doi.org/10.1016/j.eng.2022.05.003

参考文献

[1]
Collins DJ, Morahan B, Garcia-Bustos J, Doerig C, Plebanski M, Neild A. Twodimensional single-cell patterning with one cell per well driven by surface acoustic waves. Nat Commun 2015;6:8686.
[2]
Hernández-Mínguez A, Möller M, Breuer S, Pfüller C, Somaschini C, Lazic´ S, et al. Acoustically driven photon antibunching in nanowires. Nano Lett 2012;12(1):252–8.
[3]
Hackett L, Miller M, Brimigion F, Dominguez D, Peake G, Tauke-Pedretti A, et al. Towards single-chip radiofrequency signal processing via acoustoelectric electron–phonon interactions. Nat Commun 2021;12:2769.
[4]
Tao R, McHale G, Reboud J, Cooper JM, Torun H, Luo JT, et al. Hierarchical nanotexturing enables acoustofluidics on slippery yet sticky, flexible surfaces. Nano Lett 2020;20(5):3263–70.
[5]
Wenzel SW, White RM. Analytic comparison of the sensitivities of bulk-wave, surface-wave, and flexural plate-wave ultrasonic gravimetric sensors. Appl Phys Lett 1989;54(20):1976–8.
[6]
Satzinger KJ, Zhong YP, Chang HS, Peairs GA, Bienfait A, Chou MH, et al. Quantum control of surface acoustic-wave phonons. Nature 2018;563 (7733):661–5.
[7]
Munk D, Katzman M, Hen M, Priel M, Feldberg M, Sharabani T, et al. Surface acoustic wave photonic devices in silicon on insulator. Nat Commun 2019;10 (1):4214.
[8]
Chen Y, Shu Z, Zhang S, Zeng P, Liang H, Zheng M, et al. Sub-10 nm fabrication: methods and applications. Int J Extrem Manuf 2021;3(3):032002.
[9]
Büyükköse S, Vratzov B, Ataç D, van der Veen J, Santos PV, van der Wiel WG. Ultrahigh-frequency surface acoustic wave transducers on ZnO/SiO2/Si using nanoimprint lithography. Nanotechnology 2012;23(31):315303.
[10]
Mohammad MA, Chen X, Xie QY, Liu B, Conway J, Tian H, et al. Super high frequency lithium niobate surface acoustic wave transducers up to 14 GHz. In: Proceedings of 2015 IEEE International Electron Devices Meeting (IEDM); 2015 Dec 7–9; Washington, DC, USA. IEEE; 2015. p. 18.6.1–4.
[11]
Zheng J, Zhou J, Zeng P, Liu Y, Shen Y, Yao W, et al. 30 GHz surface acoustic wave transducers with extremely high mass sensitivity. Appl Phys Lett 2020;116(12):123502.
[12]
Fu S, Wang W, Qian L, Li Q, Lu Z, Shen J, et al. High-frequency surface acoustic wave devices based on ZnO/SiC layered structure. IEEE Electron Device Lett 2019;40(1):103–6.
[13]
Hashimoto K, Sato S, Teshigahara A, Nakamura T, Kano K. High-performance surface acoustic wave resonators in the 1 to 3 GHz range using a ScAlN/6H-SiC structure. IEEE Trans Ultrason Ferroelectr Freq Control 2013;60(3):637–42.
[14]
Luo JT, Zeng F, Pan F, Li HF, Niu JB, Jia R, et al. Filtering performance improvement in V-doped ZnO/diamond surface acoustic wave filters. Appl Surf Sci 2010;256(10):3081–5.
[15]
Rodriguez-Madrid JG, Iriarte GF, Pedros J, Williams OA, Brink D, Calle F. Superhigh-frequency SAW resonators on AlN/Diamond. IEEE Electron Device Lett 2012;33(4):495–7.
[16]
Zhou C, Yang Y, Jin H, Feng B, Dong S, Luo J, et al. Surface acoustic wave resonators based on (002) AlN/Pt/diamond/silicon layered structure. Thin Solid Films 2013;548:425–8.
[17]
Wang L, Chen S, Zhang J, Zhou J, Yang C, Chen Y, et al. High performance 33.7 GHz surface acoustic wave nanotransducers based on AlScN/diamond/Si layered structures. Appl Phys Lett 2018;113(9):093503.
[18]
Wang L, Chen S, Zhang J, Xiao D, Han K, Ning X, et al. Enhanced performance of 17.7 GHz SAW devices based on AlN/diamond/Si layered structure with embedded nanotransducer. Appl Phys Lett 2017;111(25):253502.
[19]
Zhou H, Zhang S, Li Z, Huang K, Zheng P, Wu J, et al. Surface wave and lamb wave acoustic devices on heterogenous substrate for 5G front-ends. In: Proceedings of 2020 IEEE International Electron Devices Meeting (IEDM); 2020 Dec 12–18; San Francisco, CA, USA. IEEE; 2020. p. 17.6.1–4.
[20]
Shen J, Fu S, Su R, Xu H, Lu Z, Xu Z, et al. High-performance surface acoustic wave devices using LiNbO3/SiO2/SiC multilayered substrates. IEEE Trans Microw Theory Tech 2021;69(8):3693–705.
[21]
Kamitani K, Grimsditch M, Nipko JC, Loong CK, Okada M, Kimura I. The elastic constants of silicon carbide: a Brillouin-scattering study of 4H and 6H SiC single crystals. J Appl Phys 1997;82(6):3152–4.
[22]
Cimalla V, Pezoldt J, Ambacher O. Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications. J Phys D Appl Phys 2007;40(20):6386.
[23]
Chen Z, Zhou J, Tang H, Liu Y, Shen Y, Yin X, et al. Ultrahigh-frequency surface acoustic wave sensors with giant mass-loading effects on electrodes. ACS Sens 2020;5(6):1657–64.
[24]
Solal M, Lardat R, Plessky VP, Makkonen T, Salomaa MM. Existence of harmonic metal thickness mode propagation for longitudinal leaky waves. In: Proceedings of 2004 IEEE Ultrasonics Symposium; 2004 Aug 23–27; Montreal, QC, Canada. IEEE; 2004. p. 1207–12.
[25]
Ma J, Qian L, Wang Y, Li C, Yang B, Tian Y, et al. Theorectical investigation of longitudinal surface acoustic waves in rotated Y-cut LiNbO3/SiC heterostructures. In: Proceedings of 2020 15th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA); 2021 Apr 16–19; Zhengzhou, China. IEEE; 2021. p. 570–4.
[26]
Kaletta UC, Wenger C. FEM simulation of Rayleigh waves for CMOS compatible SAW devices based on AlN/SiO2/Si (100). Ultrasonics 2014;54 (1):291–5.
[27]
Takagaki Y, Santos PV, Wiebicke E, Brandt O, Schönherr HP, Ploog KH. Guided propagation of surface acoustic waves in AlN and GaN films grown on 4H–SiC (0001) substrates. Phys Rev B 2002;66(15):155439.
[28]
Feld DA, Parker R, Ruby R, Bradley P, Dong S. After 60 years: a new formula for computing quality factor is warranted. In: Proceedings of 2008 IEEE Ultrasonics Symposium; 2008 Nov 2–5; Beijing, China. IEEE; 2008. p. 431–6.
[29]
Thomas S, Cole M, Villa-López FH, Gardner JW. High frequency surface acoustic wave resonator-based sensor for particulate matter detection. Sens Actuators A 2016;244:138–45.
[30]
Kadota M, Yoneda T, Fujimoto K, Nakao T, Takata E. Resonator filters using shear horizontal-type leaky surface acoustic wave consisting of heavy-metal electrode and quartz substrate. IEEE Trans Ultrason Ferroelectr Freq Control 2004;51(2):202–10.
[31]
Ou HC, Zaghloul M. Synchronous one-pole LiNbO3 surface acoustic wave mass sensors. IEEE Electron Device Lett 2010;31(5):518–20.
[32]
Ten ST, Hashim U, Gopinath SCB, Liu WW, Foo KL, Sam ST, et al. Highly sensitive Escherichia coli shear horizontal surface acoustic wave biosensor with silicon dioxide nanostructures. Biosens Bioelectron 2017;93:146–54.
[33]
Kuo FY, Wei HL, Yao DJ. PM2.5 detection by cyclone separator combined with SH-SAW sensor. In: Proceedings of 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS); 2017 Apr 9–12; Los Angeles, CA, USA. IEEE; 2017. p. 248–51.
[34]
Ma W, Tang S, Wei Y, Xie G. Simple biosensing method to detect DMMP based on QCM transducer and acetylcholine esterase sensitive film. Micro Nano Lett 2017;12(2):113–6.
[35]
Huang XH, Pan W, Hu JG, Bai QS. The exploration and confirmation of the maximum mass sensitivity of quartz crystal microbalance. IEEE Trans Ultrason Ferroelectr Freq Control 2018;65(10):1888–92.
[36]
Pan W, Huang X, Chen Q. Uniformization of mass sensitivity distribution of silver electrode QCM. IEEE Trans Ultrason Ferroelectr Freq Control 2020;67 (9):1953–6.
PDF(3899 KB)

Accesses

Citation

Detail

段落导航
相关文章

/