基于多声源波速结构成像的岩体异常区域超前辨识方法

Longjun Dong, Zhongwei Pei, Xin Xie, Yihan Zhang, Xianhang Yan

工程(英文) ›› 2023, Vol. 22 ›› Issue (3) : 191-200.

PDF(4613 KB)
PDF(4613 KB)
工程(英文) ›› 2023, Vol. 22 ›› Issue (3) : 191-200. DOI: 10.1016/j.eng.2022.05.016
研究论文
Article

基于多声源波速结构成像的岩体异常区域超前辨识方法

作者信息 +

Early Identification of Abnormal Regions in Rock-Mass Using Traveltime Tomography

Author information +
History +

摘要

异常区域超前辨识对于预防地下岩土工程灾害具有重要作用。为了满足地下工程高精度探测的需求,本文提出一种层析成像方法以辨识复杂岩体结构中的异常区域,结合了走时层析、阻尼最小二乘法和高斯滤波等技术。该方法克服了空洞区域辨识中速度差限制,减轻了迭代中孤立速度突变所带来的影响。开展了数值和室内实验,量化评估最短路径法(shortest-path method, SPM)、动态最短路径法(dynamic shortest-path method, DSPM)和快速扫描法(fast sweeping method, FSM)等正演模拟的识别精度和计算效率。结果表明,在数值和室内实验中DSPM和FSM均能清晰地辨识出异常区域。陕西震奥矿山现场应用结果证明了该方法可利用矿山开采中爆破、微震等多类声源对矿山内部未知结构进行波速场成像。本研究不仅实现了走时层析成像方法在异常区域识别中的应用,而且为地下岩土工程中潜在风险源的探测提供了新的思路。

Abstract

Early identification of abnormal regions is crucial in preventing the occurrence of underground geotechnical disasters. To meet the high-accuracy detection requirements of underground engineering, this paper proposes a tomography method for abnormal region identification in complex rock-mass structures that utilizes traveltime tomography combined with the damped least-squares method and Gaussian filtering. The proposed method overcomes the limitation of velocity difference in empty region detection and mitigates the impact from isolated velocity mutation in the iteration. Numerical and laboratory experiments were conducted to evaluate the identification accuracy and computational efficiency of forward modeling, including the shortest-path method (SPM), dynamic SPM (DSPM), and fast sweeping method (FSM). The results show that DSPM and FSM can clearly detect abnormal regions in numerical and laboratory experiments. Field experiments were conducted in the Shaanxi Zhènào mine and achieve the reconstruction of the underground roadway distribution. This paper not only realizes the application of abnormal region identification using traveltime tomography but also provides new insight into potential hazards detection in underground geotechnical engineering.

关键词

地下工程 / 走时层析 / 复杂结构 / 异常区域辨识 / 射线追踪

Keywords

Underground engineering / Traveltime tomography / Complex structures / Abnormal region identification / Ray tracing

引用本文

导出引用
Longjun Dong, Zhongwei Pei, Xin Xie. 基于多声源波速结构成像的岩体异常区域超前辨识方法. Engineering. 2023, 22(3): 191-200 https://doi.org/10.1016/j.eng.2022.05.016

参考文献

[1]
Li P, Cai M. Challenges and new insights for exploitation of deep underground metal mineral resources. Trans Nonferrous Met Soc China 2021;31 (11):3478–505.
[2]
Ranjith PG, Zhao J, Ju M, De Silva RVS, Rathnaweera TD, Bandara AKMS. Opportunities and challenges in deep mining: a brief review. Engineering 2017;3(4):546–51.
[3]
Ma J, Dong L, Zhao G, Li X. Discrimination of seismic sources in an underground mine using full waveform inversion. Int J Rock Mech Min Sci 2018;106:213–22.
[4]
Ma J, Dong L, Zhao G, Li X. Qualitative method and case study for ground vibration of tunnels induced by fault-slip in underground mine. Rock Mech Rock Eng 2019;52(6):1887–901.
[5]
Małkowski P, Niedbalski Z. A comprehensive geomechanical method for the assessment of rockburst hazards in underground mining. Int J Min Sci Technol 2020;30(3):345–55.
[6]
Sousa LR, Miranda T, Sousa RL, Tinoco J. The use of data mining techniques in rockburst risk assessment. Engineering 2017;3(4):552–8.
[7]
Jing H, Wu J, Yin Q, Wang K. Deformation and failure characteristics of anchorage structure of surrounding rock in deep roadway. Int J Min Sci Technol 2020;30(5):593–604.
[8]
Wang X, Xu Z, Sun Y, Zheng J, Zhang C, Duan Z. Construction of multi-factor identification model for real-time monitoring and early warning of mine water inrush. Int J Min Sci Technol 2021;31(5):853–66.
[9]
Ghorbani M, Shahriar K, Sharifzadeh M, Masoudi R. A critical review on the developments of rock support systems in high stress ground conditions. Int J Min Sci Technol 2020;30(5):555–72.
[10]
Fan X, Luo N, Liang H, Sun X, Zhai C, Xie L. Dynamic breakage characteristics of shale with different bedding angles under the different ambient temperatures. Rock Mech Rock Eng 2021;54(6):3245–61.
[11]
Zhu WC, Wei J, Zhao J, Niu LL. 2D numerical simulation on excavation damaged zone induced by dynamic stress redistribution. Tunn Undergr Space Technol 2014;43:315–26.
[12]
Yang JH, Yao C, Jiang QH, Lu WB, Jiang SH. 2D numerical analysis of rock damage induced by dynamic in-situ stress redistribution and blast loading in underground blasting excavation. Tunn Undergr Space Technol 2017;70:221–32.
[13]
Cong Y, Zhai C, Sun Y, Xu J, Tang W, Zheng Y. Visualized study on the mechanism of temperature effect on coal during liquid nitrogen cold shock. Appl Therm Eng 2021;194:116988.
[14]
Yang W, Lin B, Yan Q, Zhai C. Stress redistribution of longwall mining stope and gas control of multi-layer coal seams. Int J Rock Mech Min Sci 2014;72:8–15.
[15]
Lei XL, Kusunose K, Nishizawa O, Cho A, Satoh T. On the spatio–temporal distribution of acoustic emissions in two granitic rocks under triaxial compression: the role of pre-existing cracks. Geophys Res Lett 2000;27 (13):1997–2000.
[16]
Dong L, Tao Q, Hu Q. Influence of temperature on acoustic emission source location accuracy in underground structure. T Nonferr Metal Soc 2021;31 (8):2468–78.
[17]
Dong L, Chen Y, Sun D, Zhang Y. Implications for rock instability precursors and principal stress direction from rock acoustic experiments. Int J Min Sci Technol 2021;31(5):789–98.
[18]
Cao W, Durucan S, Cai Wu, Shi JQ, Korre A. A physics-based probabilistic forecasting methodology for hazardous microseismicity associated with longwall coal mining. Int J Coal Geol 2020;232:103627.
[19]
Dong L, Sun D, Han G, Li X, Hu Q, Shu L. Velocity-free localization of autonomous driverless vehicles in underground intelligent mines. IEEE Trans Veh Technol 2020;69(9):9292–303.
[20]
Li S, Liu B, Xu X, Nie L, Liu Z, Song J, et al. An overview of ahead geological prospecting in tunneling. Tunn Undergr Space Technol 2017;63:69–94.
[21]
Liu B, Chen L, Li S, Song J, Xu X, Li M, et al. Three-dimensional seismic aheadprospecting method and application in TBM tunneling. J Geotech Geoenviron Eng 2017;143(12):04017090.
[22]
Aki K, Lee WHK. Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. a homogeneous initial model. J Geophys Res 1976;81(23):4381–99.
[23]
Aki K, Christoffersson A, Husebye ES. Determination of the threedimensional seismic structure of the lithosphere. J Geophys Res 1977;82 (2):277–96.
[24]
Julian BR, Gubbins D. Three-dimensional seismic ray tracing. J Geophys 1977;43:95–113.
[25]
Kim W, Hahm IK, Ahn SJ, Lim DH. Determining hypocentral parameters for local earthquakes in 1-D using a genetic algorithm. Geophys J Int 2006;166 (2):590–600.
[26]
Browning M, McMechan G, Ferguson J. Application of Sobolev gradient techniques to two-point ray tracing. Geophysics 2013;78(3):T59–66.
[27]
Nakanishi I, Yamaguchi K. A numerical experiment on nonlinear image reconstruction from first-arrival times for two-dimensional island arc structure. J Phys Earth 1986;34(2):195–201.
[28]
Nasr M, Giroux B, Dupuis JC. A hybrid approach to compute seismic travel times in three-dimensional tetrahedral meshes. Geophys Prospect 2020;68 (4):1291–313.
[29]
Dong L, Tong X, Hu Q, Tao Q. Empty region identification method and experimental verification for the two-dimensional complex structure. Int J Rock Mech Min Sci 2021;147:104885.
[30]
Dong L, Hu Q, Tong X, Liu Y. Velocity-free MS/AE source location method for three-dimensional hole-containing structures. Engineering 2020;6(7):827–34.
[31]
Sethian JA. A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci USA 1996;93(4):1591–5.
[32]
Sethian JA, Popovici AM. 3-D traveltime computation using the fast marching method. Geophysics 1999;64(2):516–23.
[33]
Rawlinson N, Sambridge M. Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophysics 2004;69(5):1338–50.
[34]
Dong L, Tong X, Ma J. Quantitative investigation of tomographic effects in abnormal regions of complex structures. Engineering 2021;7(7): 1011–22.
[35]
Jiang R, Dai F, Liu Y, Li A. Fast marching method for microseismic source location in cavern-containing rockmass: performance analysis and engineering application. Engineering 2021;7(7):1023–34.
[36]
Brantut N. Time-resolved tomography using acoustic emissions in the laboratory, and application to sandstone compaction. Geophys J Int 2018;213(3):2177–92.
[37]
Zhao H. A fast sweeping method for Eikonal equations. Math Comput 2004;74 (250):603–27.
[38]
Leung S, Qian J. An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals. Commun Math Sci 2006;4 (1):249–66.
[39]
Zhang Q, Ma X, Nie Y. An iterative fast sweeping method for the eikonal equation in 2D anisotropic media on unstructured triangular meshes. Geophysics 2021;86(3):U49–61.
[40]
Dong X, Yang D, Niu F, Liu S, Tong P. Adjoint traveltime tomography unravels a scenario of horizontal mantle flow beneath the north China craton. Sci Rep 2021;11(1):12523.
[41]
Obayashi M, Yoshimitsu J, Suetsugu D, Shiobara H, Sugioka H, Ito A, et al. Interrelation of the stagnant slab, Ontong Java Plateau, and intraplate volcanism as inferred from seismic tomography. Sci Rep 2021;11(1): 20966.
[42]
Hua Y, Zhao D, Toyokuni G, Xu Y. Tomography of the source zone of the great 2011 Tohoku earthquake. Nat Commun 2020;11(1):1163.
[43]
Dong L, Luo Q. Investigations and new insights on earthquake mechanics from fault slip experiments. Earth Sci Rev 2022;228(932):104019.
[44]
Cao W, Shi JQ, Si G, Durucan S, Korre A. Numerical modelling of microseismicity associated with longwall coal mining. Int J Coal Geol 2018;193:30–45.
[45]
Cao W, Durucan S, Cai W, Shi JQ, Korre A, Jamnikar S, et al. The role of mining intensity and pre-existing fracture attributes on spatial, temporal and magnitude characteristics of microseismicity in longwall coal mining. Rock Mech Rock Eng 2020;53(9):4139–62.
[46]
Dong L, Tang Z, Li X, Chen Y, Xue J. Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform. J Cent South Univ 2020;27(10):3078–89.
[47]
Nishizawa O, Lei X. A numerical study on finding an optimum model in velocity tomography by using the extended information criterion. Geophys Res Lett 1995;22(10):1313–6.
PDF(4613 KB)

Accesses

Citation

Detail

段落导航
相关文章

/