基于脱细胞后鱼皮细胞外基质的生物打印水凝胶纺织品用于创面修复

Xiang Lin, Han Zhang, Hui Zhang, Zhuohao Zhang, Guopu Chen, Yuanjin Zhao

工程(英文) ›› 2023, Vol. 25 ›› Issue (6) : 120-127.

PDF(2737 KB)
PDF(2737 KB)
工程(英文) ›› 2023, Vol. 25 ›› Issue (6) : 120-127. DOI: 10.1016/j.eng.2022.05.022
研究论文
Article

基于脱细胞后鱼皮细胞外基质的生物打印水凝胶纺织品用于创面修复

作者信息 +

Bio-Printed Hydrogel Textiles Based on Fish Skin Decellularized Extracellular Matrix for Wound Healing

Author information +
History +

摘要

常见的创面修复具有治疗难度大、患者数量多、医疗负担重等特点,一直是临床研究的热点。研究者投入了大量的科研力量来生产各种具有定制需求和功能的伤口敷料。这里,我们提出了基于鱼皮脱细胞的细胞外基质(dECM)水凝胶纺织品用于创面修复。鱼源dECM具有理想的生物相容性,所以生物打印纺织品在细胞黏附和增殖方面表现出优异的性能。此外,基于dECM的水凝胶是使用生物打印方法生成的,因此其表面呈现出可调节的多孔结构,整个纺织品具有良好的透气性。而且,水凝胶骨架上多孔结构中的高比表面积使其能够负载多种活性分子,提高伤口愈合效果。根据体内研究结果,我们证明制备的纺织品在负载活性药物分子姜黄素(Cur)和碱性成纤维细胞生长因子(bFGF)后,可以加速慢性创面修复过程。这些结果表明鱼皮dECM纺织品在创面修复和生物医学工程中具有潜在价值。

Abstract

Wound healing has always been a focus of clinical study due to its universality, difficult treatment, large number of patients, and heavy medical burden. A great deal of effort has been devoted to generating various wound dressings with special features and functions to satisfy specific demands. Here, we present novel bio-printed textiles based on fish skin decellularized extracellular matrix (dECM) for wound healing. Thanks to the desirable biocompatibility of the fish-derived dECM, the bio-printed textiles exhibit excellent performance in terms of cell adherence and proliferation. Since the dECM-based hydrogels are generated using a bio-printing method, the bio-printed textiles exhibit an adjustable porous structure with good air permeability throughout the whole textile. Moreover, the high specific surface areas of the porous structure on the hydrogel skeleton make it possible to load a variety of active molecules to improve the wound healing effect. According to an in vivo study, we demonstrate that the prepared textiles loaded with the active drug molecules curcumin (Cur) and basic fibroblast growth factor (bFGF) can significantly speed up the chronic wound healing process. These remarkable properties indicate the potential value of fish-skin-dECM textiles in wound healing and biomedical engineering.

关键词

生物打印 / 鱼皮 / 细胞外基质 / 水凝胶 / 创面修复

Keywords

Bio-printing / Fish skin / Decellularized extracellular matrix / Hydrogel / Wound healing

引用本文

导出引用
Xiang Lin, Han Zhang, Hui Zhang. 基于脱细胞后鱼皮细胞外基质的生物打印水凝胶纺织品用于创面修复. Engineering. 2023, 25(6): 120-127 https://doi.org/10.1016/j.eng.2022.05.022

参考文献

[1]
Zhou F, Hong Y, Liang R, Zhang X, Liao Y, Jiang D, et al. Rapid printing of bioinspired 3D tissue constructs for skin regeneration. Biomaterials 2020;258:120287.
[2]
Correa-Gallegos D, Jiang D, Christ S, Ramesh P, Ye H, Wannemacher J, et al. Patch repair of deep wounds by mobilized fascia. Nature 2019;576(7786):287‒92.
[3]
Kurita M, Araoka T, Hishida T, O’Keefe DD, Takahashi Y, Sakamoto A, et al. In vivo reprogramming of wound-resident cells generates skin epithelial tissue. Nature 2018;561(7722):243‒7.
[4]
Zhao X, Liang Y, Huang Y, He J, Han Y, Guo B. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/ pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv Funct Mater 2020;30(17):1910748.
[5]
Zhao Y, Li Z, Song S, Yang K, Liu H, Yang Z, et al. Skin-inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings. Adv Funct Mater 2019;29(31):1901474.
[6]
Pang Q, Lou D, Li S, Wang G, Qiao B, Dong S, et al. Smart flexible electronicsintegrated wound dressing for real-time monitoring and on-demand treatment of infected wounds. Adv Sci 2020;7(6):1902673.
[7]
Liang Y, Chen B, Li M, He J, Yin Z, Guo B. Injectable antimicrobial conductive hydrogels for wound disinfection and infectious wound healing. Biomacromolecules 2020;21(5):1841‒52.
[8]
Gao G, Jiang YW, Jia HR, Wu FG. Near-infrared light-controllable on-demand antibiotics release using thermo-sensitive hydrogel-based drug reservoir for combating bacterial infection. Biomaterials 2019;188:83‒95.
[9]
Cheng H, Shi Z, Yue K, Huang X, Xu Y, Gao C, et al. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater 2021;124:219‒32.
[10]
Yao X, Zhu G, Zhu P, Ma J, Chen W, Liu Z, et al. Omniphobic ZIF-8@hydrogel membrane by microfluidic-emulsion-templating method for wound healing. Adv Funct Mater 2020;30(13):1909389.
[11]
Qu J, Zhao X, Liang Y, Xu Y, Ma PX, Guo B. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing. Chem Eng J 2019;362:548‒60.
[12]
Yang J, Wang K, Yu DG, Yang Y, Bligh SWA, Williams GR. Electrospun Janus nanofibers loaded with a drug and inorganic nanoparticles as an effective antibacterial wound dressing. Mater Sci Eng C 2020;111:110805.
[13]
Zhang XX, Chen GP, Yu YR, Sun LY, Zhao YJ. Bioinspired adhesive and antibacterial microneedles for versatile transdermal drug delivery. Research 2020;2020:3672120.
[14]
Wang C, Lai J, Li K, Zhu S, Lu B, Liu J, et al. Cryogenic 3D printing of dualdelivery scaffolds for improved bone regeneration with enhanced vascularization. Bioact Mater 2021;6(1):137‒45.
[15]
Qiao Z, Lian M, Han Y, Sun B, Zhang X, Jiang W, et al. Bioinspired stratified electrowritten fiber-reinforced hydrogel constructs with layer-specific induction capacity for functional osteochondral regeneration. Biomaterials 2021;266:120385.
[16]
Chaudhuri O, Cooper-White J, Janmey PA, Mooney DJ, Shenoy VB. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 2020;584(7822):535‒46.
[17]
Mao X, Cheng R, Zhang H, Bae J, Cheng L, Zhang L, et al. Self-healing and injectable hydrogel for matching skin flap regeneration. Adv Sci 2019;6(13):1901124.
[18]
Hamad K, Kaseem M, Yang HW, Deri F, Ko YG. Properties and medical applications of polylactic acid: a review. Express Polym Lett 2015;9(5):435‒55.
[19]
Mogoᶊanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 2014;463(2):127‒36.
[20]
Bagher Z, Ehterami A, Safdel MH, Khastar H, Semiari H, Asefnejad A, et al. Wound healing with alginate/chitosan hydrogel containing hesperidin in rat model. J Drug Deliv Sci Technol 2020;55:101379.
[21]
Chen X, Villa NS, Zhuang YF, Chen LZ, Wang TF, Li ZD, et al. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics. Adv Energy Mater 2020;10(4):1902769.
[22]
Zhang H, Chen G, Yu Y, Guo J, Tan Q, Zhao Y. Microfluidic printing of slippery textiles for medical drainage around wounds. Adv Sci 2020;7(16):2000789.
[23]
Ghavami Nejad A, Park CH, Kim CS. In situ synthesis of antimicrobial silver nanoparticles within antifouling zwitterionic hydrogels by catecholic redox chemistry for wound healing application. Biomacromolecules 2016;17(3):1213‒23.
[24]
Gupta A, Briffa SM, Swingler S, Gibson H, Kannappan V, Adamus G, et al. Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications. Biomacromolecules 2020;21(5):1802‒11.
[25]
Yang K, Han Q, Chen B, Zheng Y, Zhang K, Li Q, et al. Antimicrobial hydrogels: promising materials for medical application. Int J Nanomedicine 2018;13:2217‒63.
[26]
Kim BS, Lee JS, Gao G, Cho DW. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 2017;9(2):025034.
[27]
Crapo PM, Gilbert TW, Badylak SF. An overview of tissue and whole organ decellularization processes. Biomaterials 2011;32(12):3233‒43.
[28]
Karimi A, Navidbakhsh M. Material properties in unconfined compression of gelatin hydrogel for skin tissue engineering applications. Biomed Eng/Biomed Te 2014;59(6):479‒86.
[29]
Subhan F, Hussain Z, Tauseef I, Shehzad A, Wahid F. A review on recent advances and applications of fish collagen. Crit Rev Food Sci Nutr 2021;61(6):1027‒37.
[30]
Chen J, Gao K, Liu S, Wang S, Elango J, Bao B, et al. Fish collagen surgical compress repairing characteristics on wound healing process in vivo. Mar Drugs 2019;17(1):33.
[31]
Yang Q, Li H, Li M, Li Y, Chen S, Bao B, et al. Rayleigh instability-assisted satellite droplets elimination in inkjet printing. ACS Appl Mater Interfaces 2017;9(47):41521‒8.
[32]
Luo Y, Wei X, Wan Y, Lin X, Wang Z, Huang P. 3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair. Acta Biomater 2019;92:37‒47.
[33]
De Santis MM, Alsafadi HN, Tas S, Bölükbas DA, Prithiviraj S, Da Silva IAN, et al. Extracellular-matrix-reinforced bioinks for 3D bioprinting human tissue. Adv Mater 2021;33(3):2005476.
PDF(2737 KB)

Accesses

Citation

Detail

段落导航
相关文章

/