基于金纳米/介孔氧化镍/泡沫镍纳米复合材料的微型电极用于地下水重金属检测

薛博元, 杨倩, 夏楷东, 李志宏, 陈宇徽, 张大奕, 周小红

工程(英文) ›› 2023, Vol. 27 ›› Issue (8) : 199-208.

PDF(2497 KB)
PDF(2497 KB)
工程(英文) ›› 2023, Vol. 27 ›› Issue (8) : 199-208. DOI: 10.1016/j.eng.2022.06.005
研究论文
Article

基于金纳米/介孔氧化镍/泡沫镍纳米复合材料的微型电极用于地下水重金属检测

作者信息 +

An AuNPs/Mesoporous NiO/Nickel Foam Nanocomposite as a Miniaturized Electrode for Heavy Metal Detection in Groundwater

Author information +
History +

摘要

Pb2+和Cu2+等重金属是地下水中持久性污染物之一。对这些金属进行频繁监测需要高效、灵敏、经济、可靠的方法。文中提出了一种基于纳米复合材料的微型电极,利用方波伏安电化学分析技术同时检测Pb2+和Cu2+。文中还提出一种简便的原位水热煅烧法,无需黏合剂即可直接在三维泡沫镍上生长介孔氧化镍,然后用电化学方法在泡沫镍中嵌入金纳米颗粒(AuNP)。介孔氧化镍和AuNP之间低势垒欧姆接触的精心设计,有助于介孔氧化镍内靶标介导的纳米通道限域电子转移。因此,该方法可以同时准确测定重金属Pb2+(检测限为0.020 mg·L−1,检测范围为2.0~16.0 mg·L−1)和Cu2+(检测限为0.013 mg·L−1,检测范围为0.4~12.8 mg·L−1)。此外,地下水中的其他重金属离子和常见干扰离子对电极性能的影响微乎其微,地下水样品加标回收率在96.3% ± 2.1%和109.4% ± 0.6%之间。此电极结构紧凑、形状灵活、功耗低,而且可以远程操作,这为现场检测地下水中的重金属开辟了新的技术路径,进而展示了在环境监测领域进行革新的潜力。

Abstract

Heavy metals, notably Pb2+ and Cu2+, are some of the most persistent contaminants found in groundwater. Frequent monitoring of these metals, which relies on efficient, sensitive, cost-effective, and reliable methods, is a necessity. We present a nanocomposite-based miniaturized electrode for the concurrent measurement of Pb2+ and Cu2+ by exploiting the electroanalytical technique of square wave voltammetry. We also propose a facile in situ hydrothermal calcination method to directly grow binder-free mesoporous NiO on a three-dimensional nickel foam, which is then electrochemically seeded with gold nanoparticles (AuNPs). The meticulous design of a low-barrier Ohmic contact between mesoporous NiO and AuNPs facilitates target-mediated nanochannel-confined electron transfer within mesoporous NiO. As a result, the heavy metals Pb2+ (0.020 mg·L−1 detection limit; 2.0-16.0 mg·L−1 detection range) and Cu2+ (0.013 mg·L−1 detection limit; 0.4-12.8 mg·L−1 detection range) can be detected simultaneously with high precision. Furthermore, other heavy metal ions and common interfering ions found in groundwater showed negligible impacts on the electrode’s performance, and the recovery rate of groundwater samples varied between 96.3% ± 2.1% and 109.4% ± 0.6%. The compactness, flexible shape, low power consumption, and ability to remotely operate our electrode pave the way for onsite detection of heavy metals in groundwater, thereby demonstrating the potential to revolutionize the field of environmental monitoring.

关键词

金纳米颗粒 / 介孔氧化镍 / 微型电极 / 重金属离子 / 地下水 / 方波伏安法

Keywords

AuNPs / Mesoporous NiO / Miniaturized electrode / Heavy metal ions / Groundwater / Square wave voltammetry

引用本文

导出引用
薛博元, 杨倩, 夏楷东. 基于金纳米/介孔氧化镍/泡沫镍纳米复合材料的微型电极用于地下水重金属检测. Engineering. 2023, 27(8): 199-208 https://doi.org/10.1016/j.eng.2022.06.005

参考文献

[1]
J. Herdan, R. Feeney, S.P. Kounaves, A.F. Flannery, C.W. Storment, G.T.A. Kovacs, et al. Field evaluation of an electrochemical probe for in situ screening of heavy metals in groundwater. Environ Sci Technol, 32 (1) (1998), pp. 131-136.
[2]
Z. Wang, Q. Su, S. Wang, Z. Gao, J. Liu. Spatial distribution and health risk assessment of dissolved heavy metals in groundwater of eastern China coastal zone. Environ Pollut, 290 (2021), p. 118016.
[3]
S.M. Pyle, J.M. Nocerino, S.N. Deming, J.A. Palasota, J.M. Palasota, E.L. Miller, et al. Comparison of AAS, ICP-AES, PSA, and XRF in determining lead and cadmium in soil. Environ Sci Technol, 30 (1) (1996), pp. 204-213.
[4]
T. Radu, D. Diamond. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. J Hazard Mater, 171 (1-3) (2009), pp. 1168-1171.
[5]
S. Li, B. Hu, Z. Jiang, P. Liang, X. Li, L. Xia. Selective separation of La3+ and lanthanum organic complexes with nanometer-sized titanium dioxide and their detection by using fluorination-assisted electrothermal vaporization ICP-AES with in-situ matrix removal. Environ Sci Technol, 38 (7) (2004), pp. 2248-2251.
[6]
I.J. Cindrić, M. Zeiner, M. Kröppl, G. Stingeder. Comparison of sample preparation methods for the ICP-AES determination of minor and major elements in clarified apple juices. Microchem J, 99 (2) (2011), pp. 364-369.
[7]
M. Lenz, G.H. Floor, L.H.E. Winkel, G. Román-Ross, P.F.X. Corvini. Online preconcentration-IC-ICP-MS for selenium quantification and speciation at ultratraces. Environ Sci Technol, 46 (21) (2012), pp. 11988-11994. DOI: 10.1021/es302550b
[8]
B. Dai, M. Cao, G. Fang, B. Liu, X. Dong, M. Pan, et al. Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS. J Hazard Mater, 219-220 (2012), pp. 103-110.
[9]
N. Idros, D. Chu. Triple-indicator-based multidimensional colorimetric sensing platform for heavy metal ion detections. ACS Sens, 3 (9) (2018), pp. 1756-1764. DOI: 10.1021/acssensors.8b00490
[10]
W. Wu, A. Chen, L. Tong, Z. Qing, K.P. Langone, W.E. Bernier, et al. Facile synthesis of fluorescent conjugated polyelectrolytes using polydentate sulfonate as highly selective and sensitive copper(II) sensors. ACS Sens, 2 (9) (2017), pp. 1337-1344. DOI: 10.1021/acssensors.7b00400
[11]
P.D. Patil, S. Ghosh, M. Wasala, S. Lei, R. Vajtai, P.M. Ajayan, et al. Gate-induced metal-insulator transition in 2D van der Waals layers of copper indium selenide based field-effect transistors. ACS Nano, 13 (11) (2019), pp. 13413-13420. DOI: 10.1021/acsnano.9b06846
[12]
R. Ding, Y.H. Cheong, A. Ahamed, G. Lisak. Heavy metals detection with paper-based electrochemical sensors. Anal Chem, 93 (4) (2021), pp. 1880-1888. DOI: 10.1021/acs.analchem.0c04247
[13]
B. Hambly, M. Guzinski, F. Perez, B. Pendley, E. Lindner. Deposition of EDOT-decorated hollow nanocapsules into PEDOT films for optical and electrochemical sensing. ACS Appl Nano Mater, 3 (7) (2020), pp. 6328-6335. DOI: 10.1021/acsanm.0c00572
[14]
J. Shen, Y. Zhu, H. Jiang, C. Li. 2D nanosheets-based novel architectures: synthesis, assembly and applications. Nano Today, 11 (4) (2016), pp. 483-520. DOI: 10.5325/style.50.4.0483
[15]
L. Peng, P. Xiong, L. Ma, Y. Yuan, Y. Zhu, D. Chen, et al. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat Commun, 8 (1) (2017), p. 15139.
[16]
M. Tyagi, M. Tomar, V. Gupta. Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor. Anal Chim Acta, 726 (2012), pp. 93-101.
[17]
S. Li, N. Xia, X. Lv, M. Zhao, B. Yuan, H. Pang. A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol. Sens Actuators B Chem, 190 (2014), pp. 809-817.
[18]
Z. Chen, G. Cao, L. Gan, H. Dai, N. Xu, M. Zang, et al. Highly dispersed platinum on honeycomb-like NiO@Ni film as a synergistic electrocatalyst for the hydrogen evolution reaction. ACS Catal, 8 (9) (2018), pp. 8866-8872. DOI: 10.1021/acscatal.8b02212
[19]
C. Zhang, L. Qian, K. Zhang, S. Yuan, J. Xiao, S. Wang. Hierarchical porous NiNiO core-shells with superior conductivity for electrochemical pseudo-capacitors and glucose sensors. J Mater Chem A Mater Energy Sustain, 3 (19) (2015), pp. 10519-10525.
[20]
G. Cheng, W. Yang, C. Dong, T. Kou, Q. Bai, H. Wang, et al. Ultrathin mesoporous NiO nanosheet-anchored 3D nickel foam as an advanced electrode for supercapacitors. J Mater Chem A Mater Energy Sustain, 3 (33) (2015), pp. 17469-17478.
[21]
X. Wang, L. Qiao, X. Sun, X. Li, D. Hu, Q. Zhang, et al. Mesoporous NiO nanosheet networks as high performance anodes for Li ion batteries. J Mater Chem A Mater Energy Sustain, 1 (13) (2013), p. 4173. DOI: 10.1039/c3ta01640d
[22]
H. Tian, S. Zhu, F. Xu, W. Mao, H. Wei, Y. Mai, et al. Growth of 2D mesoporous polyaniline with controlled pore structures on ultrathin MoS2 nanosheets by block copolymer self-assembly in solution. ACS Appl Mater Interfaces, 9 (50) (2017), pp. 43975-43982. DOI: 10.1021/acsami.7b13666
[23]
L. Liu, Y. Li, S. Yuan, M. Ge, M. Ren, C. Sun, et al. Nanosheet-based NiO microspheres: controlled solvothermal synthesis and lithium storage performances. J Phys Chem C, 114 (1) (2010), pp. 251-255. DOI: 10.1021/jp909014w
[24]
K. Xia, C. Yang, Y. Chen, L. Tian, Y. Su, J. Wang, et al. In situ fabrication of Ni(OH)2 flakes on Ni foam through electrochemical corrosion as high sensitive and stable binder-free electrode for glucose sensing. Sens Actuators B Chem, 240 (2017), pp. 979-987.
[25]
P. Liu, J. Ran, B. Xia, S. Xi, D. Gao, J. Wang.Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn-Air batteries. Nano-Micro Lett, 12 (1) (2020), p. 68. DOI: 10.1161/circulationaha.120.047549
[26]
K. Xia, Z. Li, X. Zhou. Ultrasensitive detection of a variety of analytical targets based on a functionalized low-resistance AuNPs/β-Ni(OH)2 nanosheets/Ni foam sensing platform. Adv Funct Mater, 29 (39) (2019), p. 1904922.
[27]
M.R. Bindhu, M. Umadevi. Antibacterial activities of green synthesized gold nanoparticles. Mater Lett, 120 (2014), pp. 122-125.
[28]
D.H. Nguyen, S.A. El-Safty.Synthesis of mesoporous NiO nanosheets for the detection of toxic NO2 gas. Chemistry, 17 (46) (2011), pp. 12896-12901
[29]
S.I. Kim, P. Thiyagarajan, J.H. Jang. Great improvement in pseudocapacitor properties of nickel hydroxide via simple gold deposition. Nanoscale, 6 (20) (2014), pp. 11646-11652.
[30]
D. Wang, Y. Li. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater, 23 (9) (2011), pp. 1044-1060. DOI: 10.1002/adma.201003695
[31]
L. Wang, Z. Lou, R. Wang, T. Fei, T. Zhang. Ring-like PdO-decorated NiO with lamellar structures and their application in gas sensor. Sens Actuators B Chem, 171-2 (2012), pp. 1180-1185.
[32]
L. Li, J. Xu, J. Lei, J. Zhang, F. McLarnon, Z. Wei, et al. A one-step, cost-effective green method to in situ fabricate Ni(OH)2 hexagonal platelets on Ni foam as binder-free supercapacitor electrode materials. J Mater Chem A Mater Energy Sustain, 3 (5) (2015), pp. 1953-1960.
[33]
L. Ma, Y. Hu, R. Chen, G. Zhu, T. Chen, H. Lv, et al. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy, 24 (2016), pp. 139-147.
[34]
G. Pramanik, J. Humpolickova, J. Valenta, P. Kundu, S. Bals, P. Bour, et al. Gold nanoclusters with bright near-infrared photoluminescence. Nanoscale, 10 (8) (2018), pp. 3792-3798. DOI: 10.1039/c7nr06050e
[35]
W. Gao, H.Y.Y. Nyein, Z. Shahpar, H.M. Fahad, K. Chen, S. Emaminejad, et al. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens, 1 (7) (2016), pp. 866-874. DOI: 10.1021/acssensors.6b00287
[36]
B. Cheng, L. Zhou, L. Lu, J. Liu, X. Dong, F. Xi, et al. Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. Sens Actuators B Chem, 259 (2018), pp. 364-371.
[37]
D. Connelly, C. Faulkner, P.A. Clifton, D.E. Grupp. Fermi-level depinning for low-barrier Schottky source/drain transistors. Appl Phys Lett, 88 (1) (2006), p. 012105.
[38]
Y. Tan, X. Xue, Q. Peng, H. Zhao, T. Wang, Y. Li. Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios. Nano Lett, 7 (12) (2007), pp. 3723-3728. DOI: 10.1021/nl0721259
[39]
S. Kim, S. Kim, K. Jung, J. Kim, J. Jang. Ideal nanoporous gold based supercapacitors with theoretical capacitance and high energy/power density. Nano Energy, 24 (2016), pp. 17-24. DOI: 10.4266/kjccm.2016.31.1.17
[40]
H.B. Michaelson. The work function of the elements and its periodicity. J Appl Phys, 48 (11) (1977), pp. 4729-4733.
[41]
H. Wu, L. Wang. A study of nickel monoxide (NiO), nickel dioxide (ONiO), and Ni(O2) complex by anion photoelectron spectroscopy. J Chem Phys, 107 (1) (1997), pp. 16-21.
[42]
Z. Wang, A. Sim, J.J. Urban, B. Mi. Removal and recovery of heavy metal ions by two-dimensional MoS2 nanosheets: performance and mechanisms. Environ Sci Technol, 52 (17) (2018), pp. 9741-9748. DOI: 10.1021/acs.est.8b01705
[43]
C. Fan, L. Chen, R. Jiang, J. Ye, H. Li, Y. Shi, et al. ZnFe2O4 nanoparticles for electrochemical determination of trace Hg(II), Pb(II), Cu(II), and glucose. ACS Appl Nano Mater, 4 (4) (2021), pp. 4026-4036. DOI: 10.1021/acsanm.1c00379
[44]
S. Sang, D. Li, H. Zhang, Y. Sun, A. Jian, Q. Zhang, et al. Facile synthesis of AgNPs on reduced graphene oxide for highly sensitive simultaneous detection of heavy metal ions. RSC Adv, 7 (35) (2017), pp. 21618-21624.
[45]
M.A. Deshmukh, R. Celiesiute, A. Ramanaviciene, M.D. Shirsat, A. Ramanavicius. EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper(II), lead(II) and mercury(II) ions. Electrochim Acta, 259 (2018), pp. 930-938.
[46]
S. Mohan, P. Srivastava, S.N. Maheshwari, S. Sundar, R. Prakash. Nano-structured nickel oxide based DNA biosensor for detection of visceral leishmaniasis (Kala-azar). Analyst, 136 (13) (2011), pp. 2845-2851. DOI: 10.1039/c1an15031f
PDF(2497 KB)

Accesses

Citation

Detail

段落导航
相关文章

/