[1] |
J. Herdan, R. Feeney, S.P. Kounaves, A.F. Flannery, C.W. Storment, G.T.A. Kovacs, et al. Field evaluation of an electrochemical probe for in situ screening of heavy metals in groundwater. Environ Sci Technol, 32 (1) (1998), pp. 131-136.
|
[2] |
Z. Wang, Q. Su, S. Wang, Z. Gao, J. Liu. Spatial distribution and health risk assessment of dissolved heavy metals in groundwater of eastern China coastal zone. Environ Pollut, 290 (2021), p. 118016.
|
[3] |
S.M. Pyle, J.M. Nocerino, S.N. Deming, J.A. Palasota, J.M. Palasota, E.L. Miller, et al. Comparison of AAS, ICP-AES, PSA, and XRF in determining lead and cadmium in soil. Environ Sci Technol, 30 (1) (1996), pp. 204-213.
|
[4] |
T. Radu, D. Diamond. Comparison of soil pollution concentrations determined using AAS and portable XRF techniques. J Hazard Mater, 171 (1-3) (2009), pp. 1168-1171.
|
[5] |
S. Li, B. Hu, Z. Jiang, P. Liang, X. Li, L. Xia. Selective separation of La3+ and lanthanum organic complexes with nanometer-sized titanium dioxide and their detection by using fluorination-assisted electrothermal vaporization ICP-AES with in-situ matrix removal. Environ Sci Technol, 38 (7) (2004), pp. 2248-2251.
|
[6] |
I.J. Cindrić, M. Zeiner, M. Kröppl, G. Stingeder. Comparison of sample preparation methods for the ICP-AES determination of minor and major elements in clarified apple juices. Microchem J, 99 (2) (2011), pp. 364-369.
|
[7] |
M. Lenz, G.H. Floor, L.H.E. Winkel, G. Román-Ross, P.F.X. Corvini. Online preconcentration-IC-ICP-MS for selenium quantification and speciation at ultratraces. Environ Sci Technol, 46 (21) ( 2012), pp. 11988-11994. DOI: 10.1021/es302550b
|
[8] |
B. Dai, M. Cao, G. Fang, B. Liu, X. Dong, M. Pan, et al. Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS. J Hazard Mater, 219-220 (2012), pp. 103-110.
|
[9] |
N. Idros, D. Chu. Triple-indicator-based multidimensional colorimetric sensing platform for heavy metal ion detections. ACS Sens, 3 (9) ( 2018), pp. 1756-1764. DOI: 10.1021/acssensors.8b00490
|
[10] |
W. Wu, A. Chen, L. Tong, Z. Qing, K.P. Langone, W.E. Bernier, et al. Facile synthesis of fluorescent conjugated polyelectrolytes using polydentate sulfonate as highly selective and sensitive copper(II) sensors. ACS Sens, 2 (9) ( 2017), pp. 1337-1344. DOI: 10.1021/acssensors.7b00400
|
[11] |
P.D. Patil, S. Ghosh, M. Wasala, S. Lei, R. Vajtai, P.M. Ajayan, et al. Gate-induced metal-insulator transition in 2D van der Waals layers of copper indium selenide based field-effect transistors. ACS Nano, 13 (11) ( 2019), pp. 13413-13420. DOI: 10.1021/acsnano.9b06846
|
[12] |
R. Ding, Y.H. Cheong, A. Ahamed, G. Lisak. Heavy metals detection with paper-based electrochemical sensors. Anal Chem, 93 (4) ( 2021), pp. 1880-1888. DOI: 10.1021/acs.analchem.0c04247
|
[13] |
B. Hambly, M. Guzinski, F. Perez, B. Pendley, E. Lindner. Deposition of EDOT-decorated hollow nanocapsules into PEDOT films for optical and electrochemical sensing. ACS Appl Nano Mater, 3 (7) ( 2020), pp. 6328-6335. DOI: 10.1021/acsanm.0c00572
|
[14] |
J. Shen, Y. Zhu, H. Jiang, C. Li. 2D nanosheets-based novel architectures: synthesis, assembly and applications. Nano Today, 11 (4) ( 2016), pp. 483-520. DOI: 10.5325/style.50.4.0483
|
[15] |
L. Peng, P. Xiong, L. Ma, Y. Yuan, Y. Zhu, D. Chen, et al. Holey two-dimensional transition metal oxide nanosheets for efficient energy storage. Nat Commun, 8 (1) (2017), p. 15139.
|
[16] |
M. Tyagi, M. Tomar, V. Gupta. Influence of hole mobility on the response characteristics of p-type nickel oxide thin film based glucose biosensor. Anal Chim Acta, 726 (2012), pp. 93-101.
|
[17] |
S. Li, N. Xia, X. Lv, M. Zhao, B. Yuan, H. Pang. A facile one-step electrochemical synthesis of graphene/NiO nanocomposites as efficient electrocatalyst for glucose and methanol. Sens Actuators B Chem, 190 (2014), pp. 809-817.
|
[18] |
Z. Chen, G. Cao, L. Gan, H. Dai, N. Xu, M. Zang, et al. Highly dispersed platinum on honeycomb-like NiO@Ni film as a synergistic electrocatalyst for the hydrogen evolution reaction. ACS Catal, 8 (9) ( 2018), pp. 8866-8872. DOI: 10.1021/acscatal.8b02212
|
[19] |
C. Zhang, L. Qian, K. Zhang, S. Yuan, J. Xiao, S. Wang. Hierarchical porous NiNiO core-shells with superior conductivity for electrochemical pseudo-capacitors and glucose sensors. J Mater Chem A Mater Energy Sustain, 3 (19) (2015), pp. 10519-10525.
|
[20] |
G. Cheng, W. Yang, C. Dong, T. Kou, Q. Bai, H. Wang, et al. Ultrathin mesoporous NiO nanosheet-anchored 3D nickel foam as an advanced electrode for supercapacitors. J Mater Chem A Mater Energy Sustain, 3 (33) (2015), pp. 17469-17478.
|
[21] |
X. Wang, L. Qiao, X. Sun, X. Li, D. Hu, Q. Zhang, et al. Mesoporous NiO nanosheet networks as high performance anodes for Li ion batteries. J Mater Chem A Mater Energy Sustain, 1 (13) ( 2013), p. 4173. DOI: 10.1039/c3ta01640d
|
[22] |
H. Tian, S. Zhu, F. Xu, W. Mao, H. Wei, Y. Mai, et al. Growth of 2D mesoporous polyaniline with controlled pore structures on ultrathin MoS 2 nanosheets by block copolymer self-assembly in solution. ACS Appl Mater Interfaces, 9 (50) ( 2017), pp. 43975-43982. DOI: 10.1021/acsami.7b13666
|
[23] |
L. Liu, Y. Li, S. Yuan, M. Ge, M. Ren, C. Sun, et al. Nanosheet-based NiO microspheres: controlled solvothermal synthesis and lithium storage performances. J Phys Chem C, 114 (1) ( 2010), pp. 251-255. DOI: 10.1021/jp909014w
|
[24] |
K. Xia, C. Yang, Y. Chen, L. Tian, Y. Su, J. Wang, et al. In situ fabrication of Ni(OH)2 flakes on Ni foam through electrochemical corrosion as high sensitive and stable binder-free electrode for glucose sensing. Sens Actuators B Chem, 240 (2017), pp. 979-987.
|
[25] |
P. Liu, J. Ran, B. Xia, S. Xi, D. Gao, J. Wang.Bifunctional oxygen electrocatalyst of mesoporous Ni/NiO nanosheets for flexible rechargeable Zn-Air batteries. Nano-Micro Lett, 12 (1) ( 2020), p. 68. DOI: 10.1161/circulationaha.120.047549
|
[26] |
K. Xia, Z. Li, X. Zhou. Ultrasensitive detection of a variety of analytical targets based on a functionalized low-resistance AuNPs/β-Ni(OH)2 nanosheets/Ni foam sensing platform. Adv Funct Mater, 29 (39) (2019), p. 1904922.
|
[27] |
M.R. Bindhu, M. Umadevi. Antibacterial activities of green synthesized gold nanoparticles. Mater Lett, 120 (2014), pp. 122-125.
|
[28] |
D.H. Nguyen, S.A. El-Safty.Synthesis of mesoporous NiO nanosheets for the detection of toxic NO2 gas. Chemistry, 17 (46) (2011), pp. 12896-12901
|
[29] |
S.I. Kim, P. Thiyagarajan, J.H. Jang. Great improvement in pseudocapacitor properties of nickel hydroxide via simple gold deposition. Nanoscale, 6 (20) (2014), pp. 11646-11652.
|
[30] |
D. Wang, Y. Li. Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater, 23 (9) ( 2011), pp. 1044-1060. DOI: 10.1002/adma.201003695
|
[31] |
L. Wang, Z. Lou, R. Wang, T. Fei, T. Zhang. Ring-like PdO-decorated NiO with lamellar structures and their application in gas sensor. Sens Actuators B Chem, 171-2 (2012), pp. 1180-1185.
|
[32] |
L. Li, J. Xu, J. Lei, J. Zhang, F. McLarnon, Z. Wei, et al. A one-step, cost-effective green method to in situ fabricate Ni(OH)2 hexagonal platelets on Ni foam as binder-free supercapacitor electrode materials. J Mater Chem A Mater Energy Sustain, 3 (5) (2015), pp. 1953-1960.
|
[33] |
L. Ma, Y. Hu, R. Chen, G. Zhu, T. Chen, H. Lv, et al. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy, 24 (2016), pp. 139-147.
|
[34] |
G. Pramanik, J. Humpolickova, J. Valenta, P. Kundu, S. Bals, P. Bour, et al. Gold nanoclusters with bright near-infrared photoluminescence. Nanoscale, 10 (8) ( 2018), pp. 3792-3798. DOI: 10.1039/c7nr06050e
|
[35] |
W. Gao, H.Y.Y. Nyein, Z. Shahpar, H.M. Fahad, K. Chen, S. Emaminejad, et al. Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens, 1 (7) ( 2016), pp. 866-874. DOI: 10.1021/acssensors.6b00287
|
[36] |
B. Cheng, L. Zhou, L. Lu, J. Liu, X. Dong, F. Xi, et al. Simultaneous label-free and pretreatment-free detection of heavy metal ions in complex samples using electrodes decorated with vertically ordered silica nanochannels. Sens Actuators B Chem, 259 (2018), pp. 364-371.
|
[37] |
D. Connelly, C. Faulkner, P.A. Clifton, D.E. Grupp. Fermi-level depinning for low-barrier Schottky source/drain transistors. Appl Phys Lett, 88 (1) (2006), p. 012105.
|
[38] |
Y. Tan, X. Xue, Q. Peng, H. Zhao, T. Wang, Y. Li. Controllable fabrication and electrical performance of single crystalline Cu 2O nanowires with high aspect ratios. Nano Lett, 7 (12) ( 2007), pp. 3723-3728. DOI: 10.1021/nl0721259
|
[39] |
S. Kim, S. Kim, K. Jung, J. Kim, J. Jang. Ideal nanoporous gold based supercapacitors with theoretical capacitance and high energy/power density. Nano Energy, 24 ( 2016), pp. 17-24. DOI: 10.4266/kjccm.2016.31.1.17
|
[40] |
H.B. Michaelson. The work function of the elements and its periodicity. J Appl Phys, 48 (11) (1977), pp. 4729-4733.
|
[41] |
H. Wu, L. Wang. A study of nickel monoxide (NiO), nickel dioxide (ONiO), and Ni(O2) complex by anion photoelectron spectroscopy. J Chem Phys, 107 (1) (1997), pp. 16-21.
|
[42] |
Z. Wang, A. Sim, J.J. Urban, B. Mi. Removal and recovery of heavy metal ions by two-dimensional MoS 2 nanosheets: performance and mechanisms. Environ Sci Technol, 52 (17) ( 2018), pp. 9741-9748. DOI: 10.1021/acs.est.8b01705
|
[43] |
C. Fan, L. Chen, R. Jiang, J. Ye, H. Li, Y. Shi, et al. ZnFe2O4 nanoparticles for electrochemical determination of trace Hg(II), Pb(II), Cu(II), and glucose. ACS Appl Nano Mater, 4 (4) ( 2021), pp. 4026-4036. DOI: 10.1021/acsanm.1c00379
|
[44] |
S. Sang, D. Li, H. Zhang, Y. Sun, A. Jian, Q. Zhang, et al. Facile synthesis of AgNPs on reduced graphene oxide for highly sensitive simultaneous detection of heavy metal ions. RSC Adv, 7 (35) (2017), pp. 21618-21624.
|
[45] |
M.A. Deshmukh, R. Celiesiute, A. Ramanaviciene, M.D. Shirsat, A. Ramanavicius. EDTA_PANI/SWCNTs nanocomposite modified electrode for electrochemical determination of copper(II), lead(II) and mercury(II) ions. Electrochim Acta, 259 (2018), pp. 930-938.
|
[46] |
S. Mohan, P. Srivastava, S.N. Maheshwari, S. Sundar, R. Prakash. Nano-structured nickel oxide based DNA biosensor for detection of visceral leishmaniasis (Kala-azar). Analyst, 136 (13) ( 2011), pp. 2845-2851. DOI: 10.1039/c1an15031f
|