[1] |
M. Spalding, C. Ravilious, E. Green. World atlas of coral reefs. University of California Press, California (2001)
|
[2] |
M.L. Reaka-Kudla. The global biodiversity of coral reefs:a comparison with rain forests. M.L. Reaka-Kudla, D.E. Wilson, E.O. Wilson (Eds.), Biodiversity II: understanding and protecting our natural resources, Joseph Henry/National Academy Press, Washington (1997), pp. 83-108
|
[3] |
T.P. Hughes, M.L. Barnes, D.R. Bellwood, J.E. Cinner, G.S. Cumming, J.B.C. Jackson, et al. Coral reefs in the Anthropocene. Nature, 546 (7656) ( 2017), pp. 82-90. DOI: 10.1038/nature22901
|
[4] |
T.P. Hughes, J.T. Kerry, S.R. Connolly, A.H. Baird, C.M. Eakin, S.F. Heron, et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat Clim Chang, 9 (1) ( 2019), pp. 40-43. DOI: 10.1038/s41558-018-0351-2
|
[5] |
S. Sully, D.E. Burkepile, M.K. Donovan, G. Hodgson, R. van Woesik. A global analysis of coral bleaching over the past two decades. Nat Commun, 10 (1) (2019), p. 1264
|
[6] |
B. Rinkevich. Ecological engineering approaches in coral reef restoration. ICES J Mar Sci, 78 (1) ( 2021), pp. 410-420. DOI: 10.1093/icesjms/fsaa022
|
[7] |
T.D. Ainsworth, R.V. Thurber, R.D. Gates. The future of coral reefs: a microbial perspective. Trends Ecol Evol, 25 (4) (2010), pp. 233-240
|
[8] |
T.L. Goulet, I. Erill, M.S. Ascunce, S.J. Finley, G.T. Javan. Conceptualization of the holobiont paradigm as it pertains to corals. Front Physiol, 11 (2020), p. 566968
|
[9] |
D.G. Bourne, K.M. Morrow, N.S. Webster. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol, 70 (1) ( 2016), pp. 317-340. DOI: 10.1146/annurev-micro-102215-095440
|
[10] |
R.S. Peixoto, D.M. Harkins, K.E. Nelson. Advances in microbiome research for animal health. Annu Rev Anim Biosci, 9 (1) ( 2021), pp. 289-311. DOI: 10.1146/annurev-animal-091020-075907
|
[11] |
J.B. Raina, D. Tapiolas, B.L. Willis, D.G. Bourne. Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol, 75 (11) (2009), pp. 3492-3501
|
[12] |
K.A. Lema, B.L. Willis, D.G. Bourne. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl Environ Microbiol, 78 (9) (2012), pp. 3136-3144
|
[13] |
M.J.H. Van Oppen, L.L. Blackall. Coral microbiome dynamics, functions and design in a changing world. Nat Rev Microbiol, 17 (9) ( 2019), pp. 557-567. DOI: 10.1038/s41579-019-0223-4
|
[14] |
L. Reshef, O. Koren, Y. Loya, I. Zilber-Rosenberg, E. Rosenberg. The coral probiotic hypothesis. Environ Microbiol, 8 (12) ( 2006), pp. 2068-2073. DOI: 10.1111/j.1462-2920.2006.01148.x
|
[15] |
H.E. Epstein, H.A. Smith, G. Torda, M.J.H. van Oppen. Microbiome engineering: enhancing climate resilience in corals. Front Ecol Environ, 17 (2) ( 2019), pp. 100-108. DOI: 10.1002/fee.2001
|
[16] |
C.R. Voolstra, D.J. Suggett, R.S. Peixoto, J.E. Parkinson, K.M. Quigley, C.B. Silveira, et al. Extending the natural adaptive capacity of coral holobionts. Nat Rev Earth Environ, 2 (11) ( 2021), pp. 747-762. DOI: 10.1038/s43017-021-00214-3
|
[17] |
R.S. Peixoto, M. Sweet, D.G. Bourne. Customized medicine for corals. Front Mar Sci, 6 (2019), p. 686
|
[18] |
C.E. Lawson, W.R. Harcombe, R. Hatzenpichler, S.R. Lindemann, F.E. Löffler, M.A. O’Malley, et al. Common principles and best practices for engineering microbiomes. Nat Rev Microbiol, 17 (12) ( 2019), pp. 725-741. DOI: 10.1038/s41579-019-0255-9
|
[19] |
U.G. Mueller, J.L. Sachs. Engineering microbiomes to improve plant and animal health. Trends Microbiol, 23 (10) (2015), pp. 606-617
|
[20] |
J.L. Foo, H. Ling, Y.S. Lee, M.W. Chang. Microbiome engineering: current applications and its future. Biotechnol J, 12 (3) (2017), p. 1600099
|
[21] |
P.Y. Chen, C.C. Chen, L.F. Chu, B. McCarl. Evaluating the economic damage of climate change on global coral reefs. Glob Environ Change, 30 (2015), pp. 12-20
|
[22] |
H. Yamano, K. Sugihara, T. Watanabe, M. Shimamura, K. Hyeong. Coral reefs at 34°N, Japan: exploring the end of environmental gradients. Geology, 40 (9) ( 2012), pp. 835-838. DOI: 10.1130/G33293.1
|
[23] |
J.M. Lough. Small change, big difference: sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011. J Geophys Res Oceans, 117 (2012), p. C09018
|
[24] |
C.E.L. Hill, M.M. Lymperaki, B.W. Hoeksema. A centuries-old manmade reef in the Caribbean does not substitute natural reefs in terms of species assemblages and interspecific competition. Mar Pollut Bull, 169 (2021), p. 112576
|
[25] |
K.R.N. Anthony. Coral reefs under climate change and ocean acidification: challenges and opportunities for management and policy. Annu Rev Environ Resour, 41 (1) ( 2016), pp. 59-81. DOI: 10.1146/annurev-environ-110615-085610
|
[26] |
M. Spalding, L. Burke, S.A. Wood, J. Ashpole, J. Hutchison, P. zu Ermgassen. Mapping the global value and distribution of coral reef tourism. Mar Policy, 82 (2017), pp. 104-113
|
[27] |
N. Uribe-Castañeda, A. Newton, M. Le Tissier. Coral reef socio-ecological systems analysis & restoration. Sustainability, 10 (12) ( 2018), p. 4490. DOI: 10.3390/su10124490
|
[28] |
R. De Groot, L. Brander, S. van der Ploeg, R. Costanza, F. Bernard, L. Braat, et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst Serv, 1 (1) (2012), pp. 50-61
|
[29] |
D. Souter, S. Planes, W. Jérémy, M. Logan, D. Obura, F. Staub. Status of coral reefs of the world: 2020. Report. Global Coral Reef Monitoring Network (2020)
|
[30] |
T.H. Morrison, T.P. Hughes, W.N. Adger, K. Brown, J. Barnett, M.C. Lemos. Save reefs to rescue all ecosystems. Nature, 573 (7774) ( 2019), pp. 333-336. DOI: 10.1038/d41586-019-02737-8
|
[31] |
W.F. Precht, B.E. Gintert, M.L. Robbart, R. Fura, R. van Woesik. Unprecedented disease-related coral mortality in southeastern Florida. Sci Rep, 6 (1) (2016), p. 31374
|
[32] |
C. Dahlgren, V. Pizarro, K. Sherman, W. Greene, J. Oliver. Spatial and temporal patterns of stony coral tissue loss disease outbreaks in the Bahamas. Front Mar Sci, 8 (2021), p. 682114
|
[33] |
F. Prada, E. Caroselli, S. Mengoli, L. Brizi, P. Fantazzini, B. Capaccioni, et al. Ocean warming and acidification synergistically increase coral mortality. Sci Rep, 7 (1) (2017), p. 40842
|
[34] |
T.Y. Zhang, Y. Qu, Q.Q. Zhang, J. Tang, R.W. Cao, Z.J. Dong, et al. Risks to the stability of coral reefs in the South China Sea: an integrated biomarker approach to assess the physiological responses of Trochus niloticus to ocean acidification and warming. Sci Total Environ, 782 (2021), p. 146876
|
[35] |
C.M. Ferreira, I. Nagelkerken, S.U. Goldenberg, G. Walden, J.Y.S. Leung, S.D. Connell. Functional loss in herbivores drives runaway expansion of weedy algae in a near-future ocean. Sci Total Environ, 695 (2019), p. 133829
|
[36] |
M.J. Sweet, B.E. Brown. Coral responses to anthropogenic stress in the 21st century: an ecophysiological perspective. R.N. Hughes, D.J. Hughes, I.P. Smith, A.C. Dale (Eds.), Oceanography and marine biology, CRC Press, Boca Raton (2016), pp. 44-51
|
[37] |
K.J. Kroeker, R.L. Kordas, R.N. Crim, G.G. Singh. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett, 13 (11) ( 2010), pp. 1419-1434. DOI: 10.1111/j.1461-0248.2010.01518.x
|
[38] |
K.R.N. Anthony, J.A. Maynard, G. Diaz-Pulido, P.J. Mumby, P.A. Marshall, L. Cao, et al. Ocean acidification and warming will lower coral reef resilience. Glob Change Biol, 17 (5) ( 2011), pp. 1798-1808. DOI: 10.1111/j.1365-2486.2010.02364.x
|
[39] |
J.E. Cinner, T.R. McClanahan, N.A.J. Graham, T.M. Daw, J. Maina, S.M. Stead, et al. Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Glob Environ Change, 22 (1) (2012), pp. 12-20
|
[40] |
T.P. Hughes, H. Huang, M.A. Young. The wicked problem of China’s disappearing coral reefs. Conserv Biol, 27 (2) ( 2013), pp. 261-269. DOI: 10.1111/j.1523-1739.2012.01957.x
|
[41] |
A.P. Dadhich, K. Nadaoka. Analysis of terrestrial discharge from agricultural watersheds and its impact on nearshore and offshore reefs in Fiji. J Coast Res, 28 (5) ( 2012), pp. 1225-1235. DOI: 10.2112/JCOASTRES-D-11-00149.1
|
[42] |
C. Sheridan, P. Grosjean, J. Leblud, C.V. Palmer, A. Kushmaro, I. Eeckhaut. Sedimentation rapidly induces an immune response and depletes energy stores in a hard coral. Coral Reefs, 33 (4) ( 2014), pp. 1067-1076. DOI: 10.1007/s00338-014-1202-x
|
[43] |
T.P. Hughes, K.D. Anderson, S.R. Connolly, S.F. Heron, J.T. Kerry, J.M. Lough, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 359 (6371) ( 2018), pp. 80-83. DOI: 10.1126/science.aan8048
|
[44] |
A. Movono, H. Dahles, S. Becken. Fijian culture and the environment: a focus on the ecological and social interconnectedness of tourism development. J Sustain Tour, 26 (3) (2018), pp. 451-469
|
[45] |
K.D. Holl, T.M. Aide. When and where to actively restore ecosystems?. For Ecol Manage, 261 (10) (2011), pp. 1558-1563
|
[46] |
J.E. Maragos. Coral transplantation: a method to create, preserve, and manage coral reefs. [dissertation] University of Hawaii Sea Grant, Honolulu (1974)
|
[47] |
S. Clark, A.J. Edwards. Coral transplantation as an aid to reef rehabilitation: evaluation of a case study in the Maldives Islands. Coral Reefs, 14 (4) (1995), pp. 201-213
|
[48] |
L. Boström-Einarsson, R.C. Babcock, E. Bayraktarov, D. Ceccarelli, N. Cook, S.C.A. Ferse, et al. Coral restoration—a systematic review of current methods, successes, failures and future directions. PLoS ONE, 15 (1) ( 2020), p. e0226631. DOI: 10.1371/journal.pone.0226631
|
[49] |
B. Rinkevich. Restoration strategies for coral reefs damaged by recreational activities: the use of sexual and asexual recruits. Restor Ecol, 3 (4) (1995), pp. 241-251
|
[50] |
V.F. Chamberland, M.J.A. Vermeij, M. Brittsan, M. Carl, M. Schick, S. Snowden, et al. Restoration of critically endangered elkhorn coral (Acropora palmata) populations using larvae reared from wild-caught gametes. Glob Ecol Conserv, 4 (2015), pp. 526-537
|
[51] |
F.J. Pollock, S.M. Katz, J. A.J.M. van de Water, S.W. Davies, M. Hein, G. Torda, et al. Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis. PeerJ, 5 (2) ( 2017), Article e3732. DOI: 10.7717/peerj.3732
|
[52] |
G. Suzuki. Optimization of a spawning-induction protocol for the prediction of natural coral spawning. Fish Sci, 86 (4) ( 2020), pp. 665-671. DOI: 10.1007/s12562-020-01425-1
|
[53] |
Y. Zayasu, G. Suzuki. Comparisons of population density and genetic diversity in artificial and wild populations of an arborescent coral, Acropora yongei: implications for the efficacy of “artificial spawning hotspots”. Restor Ecol, 27 (2) ( 2019), pp. 440-446. DOI: 10.1111/rec.12857
|
[54] |
J. Calle-Triviño, C. Cortés-Useche, R.I. Sellares-Blasco, J.E. Arias-González. Assisted fertilization of threatened staghorn coral to complement the restoration of nurseries in Southeastern Dominican Republic. Reg Stud Mar Sci, 18 (2018), pp. 129-134
|
[55] |
W.Y. Chan, L.M. Peplow, M.J.H. van Oppen. Interspecific gamete compatibility and hybrid larval fitness in reef-building corals: implications for coral reef restoration. Sci Rep, 9 (1) (2019), p. 4757
|
[56] |
G. Suzuki, W. Okada, Y. Yasutake, H. Yamamoto, I. Tanita, H. Yamashita, et al. Enhancing coral larval supply and seedling production using a special bundle collection system “coral larval cradle” for large-scale coral restoration. Restor Ecol, 28 (5) ( 2020), pp. 1172-1182. DOI: 10.1111/rec.13178
|
[57] |
C. Doropoulos, F. Vons, J. Elzinga, R. ter Hofstede, K. Salee, M. van Koningsveld, et al. Testing industrial-scale coral restoration techniques: harvesting and culturing wild coral-spawn slicks. Front Mar Sci, 6 (2019), p. 658
|
[58] |
M.J.H. Van Oppen, J.K. Oliver, H.M. Putnam, R.D. Gates. Building coral reef resilience through assisted evolution. Proc Natl Acad Sci USA, 112 (8) ( 2015), pp. 2307-2313. DOI: 10.1073/pnas.1422301112
|
[59] |
R.S. Peixoto, P.M. Rosado, D.C. de Assis Leite, A.S. Rosado, D.G. Bourne. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience. Front Microbiol, 8 (341) (2017), p. 341
|
[60] |
M.J.H. Van Oppen, M. Medina. Coral evolutionary responses to microbial symbioses. Philos Trans R Soc Lond B Biol Sci, 275 (1808) ( 2020), p. 20190591. DOI: 10.1098/rstb.2019.0591
|
[61] |
P.M. Rosado, D.C.A. Leite, G.A.S. Duarte, R.M. Chaloub, G. Jospin, U.N. da Rocha, et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J, 13 (4) ( 2019), pp. 921-936. DOI: 10.1038/s41396-018-0323-6
|
[62] |
E.P. Santoro, R.M. Borges, J.L. Espinoza, M. Freire, C. S.M.A. Messias, H.D.M. Villela, et al. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Sci Adv, 7 (33) (2021), Article eabg3088
|
[63] |
Y. Zhang, Q. Yang, J. Ling, L. Long, H. Huang, J. Yin, et al. Shifting the microbiome of a coral holobiont and improving host physiology by inoculation with a potentially beneficial bacterial consortium. BMC Microbiol, 21 (1) (2021), p. 130
|
[64] |
L.L. Blackall, B. Wilson, M.J. van Oppen. Coral—the world’s most diverse symbiotic ecosystem. Mol Ecol, 24 (21) ( 2015), pp. 5330-5347. DOI: 10.1111/mec.13400
|
[65] |
H.M. Mahmoud, A.A. Kalendar. Coral-associated Actinobacteria: diversity, abundance, and biotechnological potentials. Front Microbiol, 7 (2016), p. 204
|
[66] |
M.J. Sweet, A. Croquer, J.C. Bythell. Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs, 30 (1) ( 2011), pp. 39-52. DOI: 10.1007/s00338-010-0695-1
|
[67] |
M. Pernice, J.B. Raina, N. Rädecker, A. Cárdenas, C. Pogoreutz, C.R. Voolstra. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J, 14 (2) ( 2020), pp. 325-334. DOI: 10.1038/s41396-019-0548-z
|
[68] |
F. Rohwer, M. Breitbart, J. Jara, F. Azam, N. Knowlton. Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs, 20 (1) (2001), pp. 85-91
|
[69] |
J. Li, Q. Chen, S. Zhang, H. Huang, J. Yang, X.P. Tian, et al. Highly heterogeneous bacterial communities associated with the South China Sea reef corals Porites lutea, Galaxea fascicularis and Acropora millepora. PLoS ONE, 8 (8) ( 2013), p. e71301. DOI: 10.1371/journal.pone.0071301
|
[70] |
Q. Yang, Y. Zhang, M. Ahmad, J. Ling, W. Zhou, Y. Zhang, et al. Microbial community structure shifts and potential Symbiodinium partner bacterial groups of bleaching coral Pocillopora verrucosa in South China Sea. Ecotoxicology, 30 (5) ( 2021), pp. 966-974. DOI: 10.1007/s10646-021-02380-y
|
[71] |
J. Li, L. Long, Y. Zou, S. Zhang. Microbial community and transcriptional responses to increased temperatures in coral Pocillopora damicornis holobiont. Environ Microbiol, 23 (2) ( 2021), pp. 826-843. DOI: 10.1111/1462-2920.15168
|
[72] |
K.A. Lema, D.G. Bourne, B.L. Willis. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Mol Ecol, 23 (19) ( 2014), pp. 4682-4695. DOI: 10.1111/mec.12899
|
[73] |
A.D. Williams, B.E. Brown, L. Putchim, M.J. Sweet. Age-related shifts in bacterial diversity in a reef coral. PLoS ONE, 10 (12) ( 2015), p. e0144902. DOI: 10.1371/journal.pone.0144902
|
[74] |
J. Li, Q. Chen, L.J. Long, J.D. Dong, J. Yang, S. Zhang. Bacterial dynamics within the mucus, tissue and skeleton of the coral Porites lutea during different seasons. Sci Rep, 4 (1) (2014), p. 7320
|
[75] |
X. Yu, K. Yu, Z. Liao, B. Chen, C. Deng, J. Yu, et al. Seasonal fluctuations in symbiotic bacteria and their role in environmental adaptation of the scleractinian coral Acropora pruinosa in high-latitude coral reef area of the South China Sea. Sci Total Environ, 792 (2021), p. 148438
|
[76] |
J.L. Salerno, B.W. Bowen, M.S. Rappé. Biogeography of planktonic and coral-associated microorganisms across the Hawaiian Archipelago. FEMS Microbiol Ecol, 92 (8) ( 2016), p. fiw109. DOI: 10.1093/femsec/fiw109
|
[77] |
A. Shore, R.D. Day, J.A. Stewart, C.A. Burge. Dichotomy between regulation of coral bacterial communities and calcification physiology under ocean acidification conditions. Appl Environ Microbiol, 87 (6) (2021), pp. e02189-e10220
|
[78] |
J.H. Shiu, S. Keshavmurthy, P.W. Chiang, H.J. Chen, S.P. Lou, C.H. Tseng, et al. Dynamics of coral-associated bacterial communities acclimated to temperature stress based on recent thermal history. Sci Rep, 7 (1) (2017), p. 14933
|
[79] |
Y. Zhang, Q. Yang, Y. Zhang, M. Ahmad, J. Ling, X. Tang, et al. Shifts in abundance and network complexity of coral bacteria in response to elevated ammonium stress. Sci Total Environ, 768 (2021), p. 144631
|
[80] |
T. Pimentel, R.J.M. Rocha, R. Rosa, A. Soares, N.C.M. Gomes, M.C. Leal, et al. Bacterial communities from corals cultured ex situ remain stable under different light regimes-relevance for in toto aquaculture. Aquaculture, 450 (2016), pp. 258-261
|
[81] |
P.A. O’Brien, N.S. Webster, D.J. Miller, D.G. Bourne. Host-microbe coevolution: applying evidence from model systems to complex marine invertebrate holobionts. MBio, 10 (1) (2019)e02241-18
|
[82] |
E. Rosenberg, O. Koren, L. Reshef, R. Efrony, I. Zilber-Rosenberg. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol, 5 (5) ( 2007), pp. 355-362. DOI: 10.1038/nrmicro1635
|
[83] |
T.C. LaJeunesse, J.E. Parkinson, P.W. Gabrielson, H.J. Jeong, J.D. Reimer, C.R. Voolstra, et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr Biol, 28 (16) (2018), pp. 2570-2580
|
[84] |
P. Tremblay, R. Grover, J.F. Maguer, L. Legendre, C. Ferrier-Pagès. Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation. J Exp Biol, 215 (8) ( 2012), pp. 1384-1393. DOI: 10.1242/jeb.065201
|
[85] |
M.S. Burriesci, T.K. Raab, J.R. Pringle. Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. J Exp Biol, 215 (19) ( 2012), pp. 3467-3477. DOI: 10.1242/jeb.070946
|
[86] |
L. Sangsawang, B.E. Casareto, H. Ohba, H.M. Vu, A. Meekaew, T. Suzuki, et al. 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea. R Soc Open Sci, 4 (12) ( 2017), p. 171201. DOI: 10.1098/rsos.171201
|
[87] |
M. Fine, Y. Loya. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc Biol Sci, 269 (1497) (2002), pp. 1205-1210
|
[88] |
U. Cardini, V.N. Bednarz, M.S. Naumann, N. van Hoytema, L. Rix, R.A. Foster, et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc Biol Sci, 2015 (282) (1818), Article 20152257
|
[89] |
M.A. Moynihan, N.F. Goodkin, K.M. Morgan, P.Y.Y. Kho, A. Lopes Dos Santos, F.M. Lauro, et al. Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef. ISME J, 16 (1) ( 2022), pp. 233-246. DOI: 10.1038/s41396-021-01054-1
|
[90] |
Y. Zhang, J. Ling, Q. Yang, C. Wen, Q. Yan, H. Sun, et al. The functional gene composition and metabolic potential of coral-associated microbial communities. Sci Rep, 5 (1) (2015), p. 16191
|
[91] |
T.D. Glaze, D.V. Erler, H.M.P. Siljanen. Microbially facilitated nitrogen cycling in tropical corals. ISME J, 16 (1) ( 2022), pp. 68-77. DOI: 10.1038/s41396-021-01038-1
|
[92] |
A. Tilstra, F. Roth, Y.C. El-Khaled, C. Pogoreutz, N. Rädecker, C.R. Voolstra, et al. Relative abundance of nitrogen cycling microbes in coral holobionts reflects environmental nitrate availability. R Soc Open Sci, 8 (6) ( 2021), p. 201835. DOI: 10.1098/rsos.201835
|
[93] |
N. Rädecker, C. Pogoreutz, C.R. Voolstra, J. Wiedenmann, C. Wild. Nitrogen cycling in corals: the key to understanding holobiont functioning?. Trends Microbiol, 23 (8) (2015), pp. 490-497
|
[94] |
J.B. Raina, E.A. Dinsdale, B.L. Willis, D.G. Bourne. Do the organic sulfur compounds DMSP and DMS drive coral microbial associations?. Trends Microbiol, 18 (3) (2010), pp. 101-108
|
[95] |
E.S.M. Deschaseaux, G.B. Jones, M.A. Deseo, K.M. Shepherd, R.P. Kiene, H.B. Swan, et al. Effects of environmental factors on dimethylated sulfur compounds and their potential role in the antioxidant system of the coral holobiont. Limnol Oceanogr, 59 (3) ( 2014), pp. 758-768. DOI: 10.4319/lo.2014.59.3.0758
|
[96] |
M. Garren, K. Son, J.B. Raina, R. Rusconi, F. Menolascina, O.H. Shapiro, et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J, 8 (5) ( 2014), pp. 999-1007. DOI: 10.1038/ismej.2013.210
|
[97] |
R.S. Peixoto, M. Sweet, H.D.M. Villela, P. Cardoso, T. Thomas, C.R. Voolstra, et al. Coral probiotics: premise, promise, prospects. Annu Rev Anim Biosci, 9 (1) ( 2021), pp. 265-288. DOI: 10.1146/annurev-animal-090120-115444
|
[98] |
H. Fragoso ados Santos, G.A. Duarte, C.T. Rachid, R.M. Chaloub, E.N. Calderon, L.F. Marangoni, et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Sci Rep, 5 (1) (2015), p. 18268
|
[99] |
K.H. Tang, Y. Wang, X.X. Wang. Recent progress on signalling molecules of coral-associated microorganisms. Sci China Earth Sci, 62 (4) ( 2019), pp. 609-618. DOI: 10.1007/s11430-018-9332-1
|
[100] |
M. Shnit-Orland, A. Kushmaro. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol, 67 (3) ( 2009), pp. 371-380. DOI: 10.1111/j.1574-6941.2008.00644.x
|
[101] |
A.G. Grottoli, P. Dalcin Martins, M.J. Wilkins, M.D. Johnston, M.E. Warner, W.J. Cai, et al. Coral physiology and microbiome dynamics under combined warming and ocean acidification. PLoS ONE, 13 (1) ( 2018), p. e0191156. DOI: 10.1371/journal.pone.0191156
|
[102] |
M.J. Sweet, B.E. Brown, R.P. Dunne, I. Singleton, M. Bulling. Evidence for rapid, tide-related shifts in the microbiome of the coral Coelastrea aspera. Coral Reefs, 36 (3) ( 2017), pp. 815-828. DOI: 10.1007/s00338-017-1572-y
|
[103] |
A.P. Gajigan, L.A. Diaz, C. Conaco. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature. MicrobiologyOpen, 6 (4) (2017), p. e00478
|
[104] |
T. Doering, M. Wall, L. Putchim, T. Rattanawongwan, R. Schroeder, U. Hentschel, et al. Towards enhancing coral heat tolerance: a “microbiome transplantation” treatment using inoculations of homogenized coral tissues. Microbiome, 9 (1) (2021), p. 102
|
[105] |
J. Tebben, D.M. Tapiolas, C.A. Motti, D. Abrego, A.P. Negri, L.L. Blackall, et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS ONE, 6 (4) ( 2011), p. e19082. DOI: 10.1371/journal.pone.0019082
|
[106] |
J.M. Sneed, K.H. Sharp, K.B. Ritchie, V.J. Paul. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc Biol Sci, 281 (1786) ( 2014), p. 20133086. DOI: 10.1098/rspb.2013.3086
|
[107] |
L.H. Peng, X. Liang, R.H. Chang, J.Y. Mu, H.E. Chen, A. Yoshida, et al. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus. Biofouling, 36 (7) ( 2020), pp. 753-765. DOI: 10.1080/08927014.2020.1807520
|
[108] |
A. Siddik, S. Satheesh. Characterization and assessment of barnacle larval settlement-inducing activity of extracellular polymeric substances isolated from marine biofilm bacteria. Sci Rep, 9 (1) (2019), p. 17849
|
[109] |
L.E. Petersen, M. Moeller, D. Versluis, S. Nietzer, M.Y. Kellermann, P.J. Schupp. Mono- and multispecies biofilms from a crustose coralline alga induce settlement in the scleractinian coral Leptastrea purpurea. Coral Reefs, 40 (2) ( 2021), pp. 381-394. DOI: 10.1007/s00338-021-02062-5
|
[110] |
R.U. Sheth, V. Cabral, S.P. Chen, H.H. Wang. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet, 32 (4) (2016), pp. 189-200
|
[111] |
A.K. Kessell, H.C. McCullough, J.M. Auchtung, H.C. Bernstein, H.S. Song. Predictive interactome modeling for precision microbiome engineering. Curr Opin Chem Eng, 30 (2020), pp. 77-85
|
[112] |
H.L. Pham, C.L. Ho, A. Wong, Y.S. Lee, M.W. Chang. Applying the design-build-test paradigm in microbiome engineering. Curr Opin Biotechnol, 48 (2017), pp. 85-93
|
[113] |
C.M. Whitford, P. Cruz-Morales, J.D. Keasling, T. Weber. The design-build-test-learn cycle for metabolic engineering of Streptomycetes. Essays Biochem, 65 (2) (2021), pp. 261-275
|
[114] |
W.B. Dunn, D.I. Ellis. Metabolomics: current analytical platforms and methodologies. Trends Analyt Chem, 24 (4) (2005), pp. 285-294
|
[115] |
P.A. Maron, L. Ranjard, C. Mougel, P. Lemanceau. Metaproteomics: a new approach for studying functional microbial ecology. Microb Ecol, 53 (3) ( 2007), pp. 486-493. DOI: 10.1007/s00248-006-9196-8
|
[116] |
S. Bashiardes, G. Zilberman-Schapira, E. Elinav. Use of metatranscriptomics in microbiome research. Bioinform Biol Insights, 10 (2016), pp. 19-25
|
[117] |
P.G. Kougias, S. Campanaro, L. Treu, P. Tsapekos, A. Armani, I. Angelidaki. Spatial distribution and diverse metabolic functions of lignocellulose-degrading uncultured bacteria as revealed by genome-centric metagenomics. Appl Environ Microbiol, 84 (18) (2018), pp. e01244-e10318
|
[118] |
E.R. Tatta, M. Imchen, G.K. Rasineni, R. Kumavath. Microbial-mediated remediation of environmental contaminants by integrated multi OMIC’s approaches. A. Kumar, R. Kumar, P. Shukla, M.K. Pandey (Eds.), Omics technologies for sustainable agriculture and global food security, Springer Singapore, Singapore (2021), pp. 109-124. DOI: 10.1007/978-981-16-0831-5_5
|
[119] |
M.E. McCarthy, M.R. Birtwistle. Highly multiplexed, quantitative tissue imaging at cellular resolution. Curr Pathobiol Rep, 7 (3) ( 2019), pp. 109-118. DOI: 10.1007/s40139-019-00203-8
|
[120] |
K.R. Maynard, M. Tippani, Y. Takahashi, B.N. Phan, T.M. Hyde, A.E. Jaffe, et al. dotdotdot: an automated approach to quantify multiplex single molecule fluorescent in situ hybridization (smFISH) images in complex tissues. Nucleic Acids Res, 48 (11) ( 2020), p. e66. DOI: 10.1093/nar/gkaa312
|
[121] |
S.A. Wilbert, J.L. Mark Welch, G.G. Borisy. Spatial ecology of the human tongue dorsum microbiome. Cell Rep, 30 (12) (2020), pp. 4003-4015
|
[122] |
C. Jang, L. Chen, J.D. Rabinowitz. Metabolomics and isotope tracing. Cell, 173 (4) (2018), pp. 822-837
|
[123] |
D.K. Allen, J.D. Young. Tracing metabolic flux through time and space with isotope labeling experiments. Curr Opin Biotechnol, 64 (2020), pp. 92-100
|
[124] |
A.R. Zomorrodi, D. Segrè. Synthetic ecology of microbes: mathematical models and applications. J Mol Biol, 428 (5, Pt B) (2016), pp. 837-861
|
[125] |
H.T. Cao, T.E. Gibson, A. Bashan, Y.Y. Liu. Inferring human microbial dynamics from temporal metagenomics data: pitfalls and lessons. BioEssays, 39 (2) (2017), p. 1600188
|
[126] |
J. Friedman, L.M. Higgins, J. Gore. Community structure follows simple assembly rules in microbial microcosms. Nat Ecol Evol, 1 (5) (2017), p. 0109
|
[127] |
D. Gonze, K.Z. Coyte, L. Lahti, K. Faust. Microbial communities as dynamical systems. Curr Opin Microbiol, 44 (2018), pp. 41-49
|
[128] |
O.S. Venturelli, A.C. Carr, G. Fisher, R.H. Hsu, R. Lau, B.P. Bowen, et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol Syst Biol, 14 (6) (2018), p. e8157
|
[129] |
P. Xu. Dynamics of microbial competition, commensalism, and cooperation and its implications for coculture and microbiome engineering. Biotechnol Bioeng, 118 (1) ( 2021), pp. 199-209. DOI: 10.1002/bit.27562
|
[130] |
M.B.N. Albright, S. Louca, D.E. Winkler, K.L. Feeser, S.J. Haig, K.L. Whiteson, et al. Solutions in microbiome engineering: prioritizing barriers to organism establishment. ISME J, 16 (2) ( 2022), pp. 331-338. DOI: 10.1038/s41396-021-01088-5
|
[131] |
P.A. Leggieri, Y. Liu, M. Hayes, B. Connors, S. Seppälä, M.A. O’Malley, et al. Integrating systems and synthetic biology to understand and engineer microbiomes. Annu Rev Biomed Eng, 23 (1) ( 2021), pp. 169-201. DOI: 10.1146/annurev-bioeng-082120-022836
|
[132] |
H. Fang, L. Fu, J. Wang. Protocol for fecal microbiota transplantation in inflammatory bowel disease: a systematic review and meta-analysis. BioMed Res Int (2018:), p. 8941340
|
[133] |
C.L. Hvas, S.M. Dahl Jørgensen, S.P. Jørgensen, M. Storgaard, L. Lemming, M.M. Hansen, et al. Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent Clostridium difficile infection. Gastroenterology, 156 (5) (2019), pp. 1324-1332
|
[134] |
H.L. Huang, H.T. Chen, Q.L. Luo, H.M. Xu, J. He, Y.Q. Li, et al. Relief of irritable bowel syndrome by fecal microbiota transplantation is associated with changes in diversity and composition of the gut microbiota. J Dig Dis, 20 (8) ( 2019), pp. 401-408. DOI: 10.1111/1751-2980.12756
|
[135] |
D. Vyas, A. Aekka, A. Vyas. Fecal transplant policy and legislation. World J Gastroenterol, 21 (1) ( 2015), pp. 6-11. DOI: 10.3748/wjg.v21.i1.6
|
[136] |
S. Khan, R. Hauptman, L. Kelly. Engineering the microbiome to prevent adverse events: challenges and opportunities. Annu Rev Pharmacol Toxicol, 61 (1) ( 2021), pp. 159-179. DOI: 10.1146/annurev-pharmtox-031620-031509
|
[137] |
S. Jin Song, D.C. Woodhams, C. Martino, C. Allaband, A. Mu, S. Javorschi-Miller-Montgomery, et al. Engineering the microbiome for animal health and conservation. Exp Biol Med, 244 (6) ( 2019), pp. 494-504. DOI: 10.1177/1535370219830075
|
[138] |
S.K. Song, B.R. Beck, D. Kim, J. Park, J. Kim, H.D. Kim, et al. Prebiotics as immunostimulants in aquaculture: a review. Fish Shellfish Immunol, 40 (1) (2014), pp. 40-48
|
[139] |
I. Arif, M. Batool, P.M. Schenk. Plant microbiome engineering: expected benefits for improved crop growth and resilience. Trends Biotechnol, 38 (12) (2020), pp. 1385-1396
|
[140] |
B. Vinocur, A. Altman. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol, 16 (2) (2005), pp. 123-132
|
[141] |
K.M. Clouse, M.R. Wagner. Plant genetics as a tool for manipulating crop microbiomes: opportunities and challenges. Front Bioeng Biotechnol, 9 (2021), Article 567548
|
[142] |
F.E. Löffler, E.A. Edwards. Harnessing microbial activities for environmental cleanup. Curr Opin Biotechnol, 17 (3) (2006), pp. 274-284
|
[143] |
P.L. McCarty, J. Bae, J. Kim. Domestic wastewater treatment as a net energy producer—can this be achieved?. Environ Sci Technol, 45 (17) ( 2011), pp. 7100-7106. DOI: 10.1021/es2014264
|
[144] |
A. Burian, D. Pinn, I. Peralta-Maraver, M. Sweet, Q. Mauvisseau, O. Eyice, et al. Predation increases multiple components of microbial diversity in activated sludge communities. ISME J, 16 (2021), pp. 1086-1094
|
[145] |
M. Sweet, A. Ramsey, M. Bulling. Designer reefs and coral probiotics: great concepts but are they good practice?. Biodiversity, 18 (1) ( 2017), pp. 19-22. DOI: 10.1080/14888386.2017.1307786
|
[146] |
C.A. Morgans, J.Y. Hung, D.G. Bourne, K.M. Quigley. Symbiodiniaceae probiotics for use in bleaching recovery. Restor Ecol, 28 (2) ( 2020), pp. 282-288. DOI: 10.1111/rec.13069
|
[147] |
I. Atad, A. Zvuloni, Y. Loya, E. Rosenberg. Phage therapy of the white plague-like disease of Favia favus in the Red Sea. Coral Reefs, 31 (3) ( 2012), pp. 665-670. DOI: 10.1007/s00338-012-0900-5
|
[148] |
R.M. Welsh, S.M. Rosales, J.R. Zaneveld, J.P. Payet, R. McMinds, S.L. Hubbs, et al. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ, 5 ( 2017), p. e3315. DOI: 10.7717/peerj.3315
|
[149] |
J. Zhou, Z.J. Lin, Z.H. Cai, Y.H. Zeng, J.M. Zhu, X.P. Du. Opportunistic bacteria use quorum sensing to disturb coral symbiotic communities and mediate the occurrence of coral bleaching. Environ Microbiol, 22 (5) ( 2020), pp. 1944-1962. DOI: 10.1111/1462-2920.15009
|
[150] |
D.P. Silva, H.D.M. Villela, H.F. Santos, G.A.S. Duarte, J.R. Ribeiro, A.M. Ghizelini, et al. Multi-domain probiotic consortium as an alternative to chemical remediation of oil spills at coral reefs and adjacent sites. Microbiome, 9 (1) (2021), p. 118
|
[151] |
A.P. Negri, N.S. Webster, R.T. Hill, A.J. Heyward. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar Ecol Prog Ser, 223 ( 2001), pp. 121-131. DOI: 10.3354/meps223121
|
[152] |
C. Tran, M.G. Hadfield. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar Ecol Prog Ser, 433 ( 2011), pp. 85-96. DOI: 10.3354/meps09192
|
[153] |
K.H. Sharp, J.M. Sneed, K.B. Ritchie, L. Mcdaniel, V.J. Paul. Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine Roseobacter strai. Biol Bull, 228 (2) (2015), pp. 98-107
|
[154] |
Y. Zhang, Y. Zhang, Q. Yang, J. Ling, X. Tang, W. Zhang, et al. Complete genome sequence of Metabacillus sp. cB07, a bacterium inducing settlement and metamorphosis of coral larvae. Mar Genomics, 60 (3) (2021), p. 100877
|
[155] |
D. Iluz, Z. Dubinsky. Coral photobiology: new light on old views. Zoology, 118 (2) (2015), pp. 71-78
|
[156] |
F. Houlbrèque, C. Ferrier-Pagès. Heterotrophy in tropical scleractinian corals. Biol Rev Camb Philos Soc, 84 (1) ( 2009), pp. 1-17. DOI: 10.1111/j.1469-185x.2008.00058.x
|
[157] |
A.G. Grottoli, L.J. Rodrigues, J.E. Palardy. Heterotrophic plasticity and resilience in bleached corals. Nature, 440 (7088) ( 2006), pp. 1186-1189. DOI: 10.1038/nature04565
|
[158] |
L. Ezzat, J.F. Maguer, R. Grover, C. Ferrier-Pagès. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci Rep, 6 (1) (2016), p. 31768
|
[159] |
P. Rawat, S. Das, D. Shankhdhar, S.C. Shankhdhar. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake. J Soil Sci Plant Nutr, 21 (1) ( 2021), pp. 49-68. DOI: 10.1007/s42729-020-00342-7
|
[160] |
E. Kannapiran, J. Ravindran. Dynamics and diversity of phosphate mineralizing bacteria in the coral reefs of Gulf of Mannar. J Basic Microbiol, 52 (1) ( 2012), pp. 91-98. DOI: 10.1002/jobm.201100095
|
[161] |
H. Jiang, P. Qi, T. Wang, X. Chi, M. Wang, M. Chen, et al. Role of halotolerant phosphate-solubilising bacteria on growth promotion of peanut ( Arachis hypogaea) under saline soil. Ann Appl Biol, 174 (1) ( 2019), pp. 20-30. DOI: 10.1111/aab.12473
|
[162] |
T. Moriarty, W. Leggat, M.J. Huggett, T.D. Ainsworth. Coral disease causes, consequences, and risk within coral restoration. Trends Microbiol, 28 (10) (2020), pp. 793-807
|
[163] |
R. Vega Thurber, L.D. Mydlarz, M. Brandt, D. Harvell, E. Weil, L. Raymundo, et al. Deciphering coral disease dynamics: integrating host, microbiome, and the changing environment. Front Ecol Evol, 8 (2020), p. 575927
|
[164] |
J. Maynard, R. van Hooidonk, C.M. Eakin, M. Puotinen, M. Garren, G. Williams, et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat Clim Chang, 5 (7) ( 2015), pp. 688-694. DOI: 10.1038/nclimate2625
|
[165] |
J.A. Maynard, K.R.N. Anthony, C.D. Harvell, M.A. Burgman, R. Beeden, H. Sweatman, et al. Predicting outbreaks of a climate-driven coral disease in the Great Barrier Reef. Coral Reefs, 30 (2) ( 2011), pp. 485-495. DOI: 10.1007/s00338-010-0708-0
|
[166] |
J.B. Lamb, A.S. Wenger, M.J. Devlin, D.M. Ceccarelli, D.H. Williamson, B.L. Willis. Reserves as tools for alleviating impacts of marine disease. Philos Trans R Soc Lond B Biol Sci, 371 (1689) ( 2016), p. 20150210. DOI: 10.1098/rstb.2015.0210
|
[167] |
J.B. Lamb, D.H. Williamson, G.R. Russ, B.L. Willis. Protected areas mitigate diseases of reef-building corals by reducing damage from fishing. Ecology, 96 (9) ( 2015), pp. 2555-2567. DOI: 10.1890/14-1952.1
|
[168] |
L.J. Raymundo, A.R. Halford, A.P. Maypa, A.M. Kerr. Functionally diverse reef-fish communities ameliorate coral disease. Proc Natl Acad Sci USA, 106 (40) ( 2009), pp. 17067-17070. DOI: 10.1073/pnas.0900365106
|
[169] |
N.E. Kimes, C.J. Grim, W.R. Johnson, N.A. Hasan, B.D. Tall, M.H. Kothary, et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J, 6 (4) ( 2012), pp. 835-846. DOI: 10.1038/ismej.2011.154
|
[170] |
R.M. Welsh, J.R. Zaneveld, S.M. Rosales, J.P. Payet, D.E. Burkepile, R.V. Thurber. Bacterial predation in a marine host-associated microbiome. ISME J, 10 (6) ( 2016), pp. 1540-1544. DOI: 10.1038/ismej.2015.219
|
[171] |
B. Stecher, L. Maier, W.D. Hardt. ‘Blooming’ in the gut: how dysbiosis might contribute to pathogen evolution. Nat Rev Microbiol, 11 (4) ( 2013), pp. 277-284. DOI: 10.1038/nrmicro2989
|
[172] |
R.H. Certner, S.V. Vollmer. Inhibiting bacterial quorum sensing arrests coral disease development and disease-associated microbes. Environ Microbiol, 20 (2) ( 2018), pp. 645-657. DOI: 10.1111/1462-2920.13991
|
[173] |
F.M. Natrah, H.A. Ruwandeepika, S. Pawar, I. Karunasagar, P. Sorgeloos, P. Bossier, et al. Regulation of virulence factors by quorum sensing in Vibrio harveyi. Vet Microbiol, 154 (1-2) (2011), pp. 124-129
|
[174] |
S.T. Rutherford, B.L. Bassler. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med, 2 (11) ( 2012), Article a012427. DOI: 10.1101/cshperspect.a012427
|
[175] |
R.H. Certner, S.V. Vollmer. Evidence for autoinduction and quorum sensing in white band disease-causing microbes on Acropora cervicornis. Sci Rep, 5 (1) (2015), p. 11134
|
[176] |
Z.P. Ma, Y. Song, Z.H. Cai, Z.J. Lin, G.H. Lin, Y. Wang, et al. Anti-quorum sensing activities of selected coral symbiotic bacterial extracts from the South China Sea. Front Cell Infect Microbiol, 8 (2018), p. 144
|
[177] |
N. El-Kurdi, H. Abdulla, A. Hanora. Anti-quorum sensing activity of some marine bacteria isolated from different marine resources in Egypt. Biotechnol Lett, 43 (2) ( 2021), pp. 455-468. DOI: 10.1007/s10529-020-03020-x
|
[178] |
V.C. Kalia. Quorum sensing inhibitors: an overview. Biotechnol Adv, 31 (2) (2013), pp. 224-245
|
[179] |
A. Busetti, G. Shaw, J. Megaw, S.P. Gorman, C.A. Maggs, B.F. Gilmore. Marine-derived quorum-sensing inhibitory activities enhance the antibacterial efficacy of tobramycin against Pseudomonas aeruginosa. Mar Drugs, 13 (1) ( 2014), pp. 1-28. DOI: 10.3390/md13010001
|
[180] |
M.P. Lesser, J.H. Farrell. Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs, 23 (3) (2004), pp. 367-377
|
[181] |
|
[182] |
L.J. Chakravarti, V.H. Beltran, M.J.H. van Oppen. Rapid thermal adaptation in photosymbionts of reef-building corals. Glob Change Biol, 23 (11) ( 2017), pp. 4675-4688. DOI: 10.1111/gcb.13702
|
[183] |
K. Damjanovic, L.L. Blackall, N.S. Webster, M.J.H. van Oppen. The contribution of microbial biotechnology to mitigating coral reef degradation. Microb Biotechnol, 10 (5) ( 2017), pp. 1236-1243. DOI: 10.1111/1751-7915.12769
|
[184] |
A.M. Dungan, D. Bulach, H. Lin, M.J.H. van Oppen, L.L. Blackall. Development of a free radical scavenging bacterial consortium to mitigate oxidative stress in cnidarians. Microb Biotechnol, 14 (5) ( 2021), pp. 2025-2040. DOI: 10.1111/1751-7915.13877
|
[185] |
W. Huang, M. Chen, B. Song, J. Deng, M. Shen, Q. Chen, et al. Microplastics in the coral reefs and their potential impacts on corals: a mini-review. Sci Total Environ, 762 (2021), Article 143112
|
[186] |
C.J. Randall, A.P. Negri, K.M. Quigley, T. Foster, G.F. Ricardo, N.S. Webster, et al. Sexual production of corals for reef restoration in the Anthropocene. Mar Ecol Prog Ser, 635 ( 2020), pp. 203-232. DOI: 10.3354/meps13206
|
[187] |
F. Yang, J. Mo, Z. Wei, L. Long. Calcified macroalgae and their bacterial community in relation to larval settlement and metamorphosis of reef-building coral Pocillopora damicornis. FEMS Microbiol Ecol, 97 (1) (2021), p. fiaa215
|
[188] |
R. Wang, Z. Guo, Y. Tang, J. Kuang, Y. Duan, H. Lin, et al. Effects on development and microbial community of shrimp Litopenaeus vannamei larvae with probiotics treatment. AMB Express, 10 (2020), p. 109
|
[189] |
|
[190] |
T.D. Ainsworth, J.J. Renzi, B.R. Silliman. Positive interactions in the coral macro and microbiome. Trends Microbiol, 28 (8) (2020), pp. 602-604
|
[191] |
M. Sweet, H. Villela, T. Keller-Costa, R. Costa, S. Romano, D.G. Bourne, et al. Insights into the cultured bacterial fraction of corals. mSystems, 6 (3) (2021), pp. e01249-e10320
|