[1] |
C.H. Pan. Geological notes: non-marine origin of petroleum in north Shensi, and the Cretaceous of Szechuan, China. China AAPG Bull, 25 (1941), pp. 2058-2068
|
[2] |
L.D. Sun. Gulong shale oil (preface). Pet Geol Oilfield Dev Daqing, 39 (3) (2020), pp. 1-7 [Chinese].
|
[3] |
L.D. Sun, H. Liu, W.Y. He, G.X. Li, S.C. Zhang, R.K. Zhu, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China. Pet Explor Dev, 48 (3) (2021), pp. 527-540
|
[4] |
G.Y. Wang, F.L. Wang, B. Zhao, G.X. Sun, Q.A. Meng, Y.Z. Wang, et al. Exploration and development situation and development strategy of Daqing Oilfield Company. China Pet Explor, 26 (2021), pp. 45-63
|
[5] |
Y.H. Wang, J.P. Liang, J.Y. Zhang, B. Zhao, Y. Zhao, X. Liu, et al. Resource potential and exploration direction of Gulong shale oil in Songliao Basin. Pet Geol Oilfield Dev Daqing, 39 (2020), pp. 20-34 [Chinese].
|
[6] |
J.R. Xie. Petroleum. The Commercial Press, Shanghai (1929) [Chinese].
|
[7] |
Z.J. Jin, R.Z. Bai, B. Gao, M.W. Li. Has China ushered in the shale oil and gas revolution?. Oil Gas Geol, 40 (2019), pp. 451-458 [Chinese].
|
[8] |
Z.J. Jin, R.K. Zhu, X.P. Liang, Y.Q. Shen. Several issues worthy of attention in current lacustrine shale oil exploration and development. Pet Explor Dev, 48 (6) (2021), pp. 1471-1484
|
[9] |
W.Z. Zhao, S.Y. Hu, L.H. Hou, T. Yang, X. Li, B.C. Guo, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil. Pet Explor Dev, 47 (1) (2020), pp. 1-11
|
[10] |
W.Z. Zhao, R.K. Zhu, S.Y. Hu, L.H. Hou, S.T. Wu. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation. Pet Explor Dev, 47 (6) (2020), pp. 1160-1171
|
[11] |
Y.S. Ma, X.Y. Cai, P.R. Zhao, Z.Q. Hu, H.M. Liu, B. Gao, et al. Geological characteristics and exploration practices of continental shale oil in China. Acta Geol Sin, 96 (1) (2022), pp. 155-171 [Chinese].
|
[12] |
R.Q. Gao. Characteristics of petroleum generation and expulsion in abnormal pressure shale zones and the formation of fracture shale reservoirs. Pet Geol Oilfield Dev Daqing, 3 (1984), pp. 160-167 [Chinese].
|
[13] |
S. Jiang, X.L. Tang, O. Steve, A. Thomas. Enrichment factors and current misunderstanding of shale oil and gas: case study of shales in US, Argentina and China. Earth Sci, 42 (7) (2017), pp. 1083-1091 [Chinese].
|
[14] |
M.W. Li, X.X. Ma, Q.G. Jiang, Z.M. Li, X.Q. Pang, C.C. Zhang. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America. Pet Geol Recovery Effic, 26 (1) ( 2019), pp. 13-28 [Chinese]. DOI: 10.3847/1538-4365/ab2465
|
[15] |
G.P. Bai, H.H. Qiu, Z.Z. Deng, W.Y. Wang, J. Chen. Distribution and main controls for shale oil resources in USA. Pet Geol Exp, 42 (4) ( 2020), pp. 524-532 [Chinese]. DOI: 10.1080/10916466.2020.1772819
|
[16] |
J.H. Fu, S.X. Li, X.B. Niu, X.Q. Deng, X.P. Zhou. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin. NW China. Pet Explor Dev, 47 (5) (2020), pp. 931-945
|
[17] |
S.T. Fu, Z.J. Jin, J.H. Fu, S.X. Li, W.W. Yang. Transformation of understanding from tight oil to shale oil in the Member 7 of Yanchang Formation in Ordos Basin and its significance of exploration and development. Acta Petrol Sin, 42 (2021), pp. 561-569 [Chinese].
|
[18] |
D.M. Zhi, Y. Tang, Z.F. Yang, X.G. Guo, M.L. Zheng, M. Wan, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin. Oil Gas Geol, 40 (2019), pp. 524-536 [Chinese].
|
[19] |
X.Z. Zhao, L.H. Zhou, X.G. Pu, F.M. Jin, W.Z. Han, D.Q. Xiao, et al. Geological characteristics of shale rock system and shale oil exploration breakthrough in a lacustrine basin: a case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China. Pet Explor Dev, 45 (3) ( 2018), pp. 377-388. DOI: 10.3724/sp.j.1249.2018.04377
|
[20] |
X.Z. Zhao, L.H. Zhou, X.G. Pu, F.M. Jin, Z.N. Shi, W.Z. Han, et al. Formation conditions and enrichment model of retained petroleum in lacustrine shale: a case study of the Paleogene in Huanghua depression, Bohai Bay Basin, China. Pet Explor Dev, 47 (5) (2020), pp. 916-930
|
[21] |
M.Y. Li, S.T. Wu, S.Y. Hu, R.K. Zhu, S.W. Meng, J.R. Yang. Lamination texture and its effects on reservoir and geochemical properties of the Paleogene Kongdian Formation in the Cangdong Sag, Bohai Bay Basin, China. Minerals, 11 (12) ( 2021), p. 1360. DOI: 10.3390/min11121360
|
[22] |
G.Q. Song, X.Y. Xu, Z. Li, X.H. Wang. Factors controlling oil production from Paleogene shale in Jiyang depression. Oil Gas Geol, 36 (2015), pp. 463-471 [Chinese].
|
[23] |
H.M. Liu, B.S. Yu, Z.H. Xie, S.Y. Han, Z.H. Shen, C.Y. Bai. Characteristics and implications of micro-lithofacies in lacustrine basin organic-rich shale: a case study of Jiyang depression, Bohai Bay Basin. Acta Petrol Sin, 39 (2018), pp. 1328-1343 [Chinese].
|
[24] |
G.X. Li, R.K. Zhu, Y.S. Zhang, Y. Chen, J.W. Cui, Y.H. Jiang, et al. Geological characteristics, evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin, NW China. Pet Explor Dev, 49 (1) (2022), pp. 21-36
|
[25] |
C.N. Zou, Z. Yang, H.Y. Wang, D.Z. Dong, H.L. Liu, Z.S. Shi, et al. “Exploring petroleum inside source kitchen”: Jurassic unconventional giant shale oil & gas field in Sichuan Basin, China. Acta Geol Sin, 93 (2019), pp. 1551-1562 [Chinese].
|
[26] |
W.Y. He, H.Q. He, Y.H. Wang, B.W. Cui, Q.A. Meng, X.J. Guo, et al. Major breakthrough and significance of shale oil of the Jurassic Lianggaoshan Formation in Well Ping’an 1 in northeastern Sichuan Basin, China. Pet Explor, 27 (2022), pp. 40-49
|
[27] |
W.Y. He, Q.A. Meng, J.Y. Zhang. Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao Basin. Pet Geol Oilfield Dev Daqing, 40 ( 2021), pp. 1-12 [Chinese]. DOI: 10.1504/ijepee.2021.10043255
|
[28] |
W.Y. He, Q.A. Meng, Z.H. Feng, J.Y. Zhang, R. Wang. In-situ accumulation theory and exploration & development practice of Gulong shale oil in Songliao Basin. Acta Petrol Sin, 43 (2022), pp. 1-14 [Chinese].
|
[29] |
W.Y. He, B.W. Cui, F.L. Wang, Y.Z. Wang, Q.A. Meng, J.Y. Zhang, et al. Study on reservoir spaces and oil states of the Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin. Geol Rev, 68 (2022), pp. 693-741 [Chinese].
|
[30] |
G.L. Hua, S.T. Wu, J.Y. Zhang, X.H. Yu, M.D. Guan, Y. Zhao, et al. Laminar structure differences and heterogeneities in reservoirs in continental organic-rich shales: the Cretaceous Nenjiang Formation in the Songliao Basin. Interpretation, 10 (3) ( 2022), pp. SD89-106. DOI: 10.1190/int-2021-0156.1
|
[31] |
Y. Cai, R.K. Zhu, Z. Luo, S.T. Wu, T.S. Zhang, C. Liu, et al. Lithofacies and source rock quality of organic-rich shales in the Cretaceous Qingshankou Formation, Songliao Basin, NE China. Minerals, 12 (4) (2022), p. 465
|
[32] |
Z.H. Feng, W. Fang, X. Wang, C.Y. Huang, Q.L. Huo, J.H. Zhang, et al. Microfossils and molecular records in oil shales of the Songliao Basin and implications for paleo-depositional environment. Sci China Ser D Earth Sci, 52 ( 2009), p. 1559. DOI: 10.1007/s11430-009-0121-0
|
[33] |
Z.H. Feng, W. Fang, Z.G. Li, X. Wang, Q.L. Huo, C.Y. Huang, et al. Depositional environment of terrestrial petroleum source rocks and geochemical indicators in the Songliao Basin. Sci China Earth Sci, 54 (9) ( 2011), pp. 1304-1317. DOI: 10.1007/s11430-011-4268-0
|
[34] |
Z.H. Feng, Q.L. Huo, H.S. Zeng, Y.Z. Wang, Y.S. Jia. Organic matter compositions and organic pore evolution in Gulong shale of Songliao Basin. Pet Geol Oilfield Dev Daqing, 40 (2021), pp. 40-55 [Chinese].
|
[35] |
H. Cao, W. He, F. Chen, X. Shan, D. Kong, Q. Hou, et al. Integrated chemostratigraphy (δ 13C-δ 34S-δ 15N) constrains Cretaceous lacustrine anoxic events triggered by marine sulfate input. Chem Geol, 559 (2021), Article 119912
|
[36] |
G.D. Zheng, Q.T. Meng, Z.J. Liu. Paleolimnological information of oil shale in 1st member of Qingshankou Formation in northern Songliao Basin. J Jilin Univ, 50 (2) (2020), pp. 392-404 [Chinese].
|
[37] |
W.L. Yang, R.Q. Gao, Q.F. Guo, Y.G. Liu. Continental petroleum generation, migration and accumulation in the Songliao Basin. Heilongjiang Science & Technology Press, Harbin (1985) [Chinese].
|
[38] |
R.Q. Gao, X.Y. Cai. Forming conditions and distribution of petroleum fields in the Songliao Basin. Petroleum Industry Press, Beijing (1997) [Chinese].
|
[39] |
Q.J. Hou, Z.Q. Feng, Z.H. Feng. Continental petroleum geology in the Songliao Basin. Petroleum Industry Press, Beijing (2009) [Chinese].
|
[40] |
B.P. Tissot, D.H. Welte.Petroleum formation and occurrence. ( 2nd ed.), Springer verlag, Berlin (1984)
|
[41] |
J.P. Chen, Y.G. Sun, N.N. Zhong, Z.K. Huang, C.P. Deng, L.J. Xie, et al. The efficiency and model of petroleum expulsion from the lacustrine source rocks within geological frame. Acta Geol Sin, 88 (2014), pp. 2005-2032 [Chinese].
|
[42] |
J.J. Sweeney, A.K. Burnham. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull, 74 (10) (1990), pp. 1559-1570
|
[43] |
M.J. Wilson, L. Wilson, M.V. Shaldybin. Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. II. Implications of predominantly illitic clays on the physico-chemical properties of shales. Earth Sci Rev, 158 ( 2016), pp. 1-8. DOI: 10.1097/01.EEM.0000508429.81220.5b
|
[44] |
K.L. Milliken, M. Rudnicki, D.N. Awwiller, T.W. Zhang. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bull, 97 ( 2013), pp. 177-200. DOI: 10.1306/07231212048
|
[45] |
S.T. Wu, Z. Yang, X.F. Zhai, J.W. Cui, L.S. Bai, S.Q. Pan, et al. An experimental study of organic matter, minerals and porosity evolution in shales within high-temperature and high-pressure constraints. Mar Pet Geol, 102 (2019), pp. 377-390
|
[46] |
F.W.G. Julia, E.L. Stephen, E.O. Jon, E. Peter, F. András. Natural fractures in shale: a review and new observations. AAPG Bull, 98 (11) (2014), pp. 2165-2216
|
[47] |
M. Pommer, K. Milliken. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas. AAPG Bull, 99 (9) ( 2015), pp. 1713-1744. DOI: 10.1306/03051514151
|
[48] |
C.Z. Jia, X.Q. Pang, Y. Song. The mechanism of unconventional hydrocarbon formation: hydrocarbon self-sealing and intermolecular forces. Pet Explor Dev, 48 (3) (2021), pp. 507-526
|
[49] |
T. Hu, X.Q. Pang, F.J. Jiang, Q.F. Wang, X.H. Liu, Z. Wang, et al. Movable oil content evaluation of lacustrine organic-rich shales: methods and a novel quantitative evaluation model. Earth Sci Rev, 214 (2021), Article 103545
|
[50] |
Y.J. Han, B. Horsfield, R. Wirth, N. Mahlstedt, S. Bernard. Oil retention and porosity evolution in organic-rich shales. AAPG Bull, 101 (06) ( 2017), pp. 807-827. DOI: 10.1306/09221616069
|
[51] |
Y.J. Han, B. Horsfield, N. Mahlstedt, R. Wirth, D.J. Curry, H. LaReau. Factors controlling source and reservoir characteristics in the Niobrara shale oil system, Denver Basin. AAPG Bull, 103 (9) ( 2019), pp. 2045-2072. DOI: 10.1306/0121191619717287
|
[52] |
K.E. Gorynski, M.H. Tobey, D.A. Enriquez, T.M. Smagala, J.L. Dreger, R.E. Newhart. Quantification and characterization of hydrocarbon filled porosity in oil-rich shales using integrated thermal extraction, pyrolysis, and solvent extraction. AAPG Bull, 103 (3) ( 2019), pp. 723-744. DOI: 10.1306/08161817214
|
[53] |
M.F. Romero-Sarmiento. A quick analytical approach to estimate both free versus sorbed hydrocarbon contents in liquid-rich source rocks. AAPG Bull, 103 (9) ( 2019), pp. 2031-2043. DOI: 10.1306/02151918152
|