古龙页岩油——揭示陆相页岩从生油到产油的另一个地学新领域

何文渊, 朱如凯, 崔宝文, 张水昌, 蒙启安, 白斌, 冯子辉, 雷征东, 吴松涛, 何坤, 刘合, 孙龙德

工程(英文) ›› 2023, Vol. 28 ›› Issue (9) : 79-92.

PDF(5879 KB)
PDF(5879 KB)
工程(英文) ›› 2023, Vol. 28 ›› Issue (9) : 79-92. DOI: 10.1016/j.eng.2022.08.018
研究论文
Article

古龙页岩油——揭示陆相页岩从生油到产油的另一个地学新领域

作者信息 +

The Geoscience Frontier of Gulong Shale Oil: Revealing the Role of Continental Shale from Oil Generation to Production

Author information +
History +

摘要

大庆古龙页岩黏土矿物含量高达35%~45%,其粒径<0.0039 mm,石油流体横向流动性差,纵向基本不流动,因此古龙页岩一直被认为没有经济价值。近年来,我们从地球科学、渗流力学、热力学以及表面力学等多学科交叉研究入手,论证了古龙页岩油具高成熟度和高滞留烃的特点,高成熟阶段页岩排烃效率为32%~48%;有机质与黏土矿物复合体发育的孔隙与页理缝连通构成缝-孔组合储集体,是古龙页岩有利的储集空间;页岩油主要赋存在微纳米级别孔隙、层理缝与页理缝中,气油比高,可动流体饱和度中到高分布;页岩具高硬度、高弹性模量以及高断裂韧性特征,获得了古龙页岩勘探开发从生烃与储集理论创新到可动性、可压性、可采性等技术突破,实现了古龙页岩从生油到产油的重大转变,这对中国石油工业具有极其重要的科学价值和应用前景。

Abstract

The clay mineral content of Daqing Gulong shale is in the range of about 35%-45%, with particle sizes less than 0.0039 mm. The horizontal fluidity of oil in Gulong shale is poor, with near-zero vertical flowability. As a result, Gulong shale has been considered to lack commercial value. In recent years, however, interdisciplinary research in geoscience, percolation mechanics, thermodynamics, and surface mechanics has demonstrated that Gulong shale oil has a high degree of maturity and a high residual hydrocarbon content. The expulsion efficiency of Gulong shale in the high mature stage is 32%-48%. Favorable storage spaces in Gulong shale include connecting pores and lamellar fractures developed between and within organic matter and clay mineral complexes. The shale oil mainly occurs in micro- and nano-pores, bedding fractures, and lamellar fractures, with a high gas-oil ratio and medium-high movable oil saturation. Gulong shale has the characteristics of high hardness, a high elastic modulus, and high fracture toughness. This study achieves breakthroughs in the exploration and development of Gulong shale, including the theories of hydrocarbon generation and accumulation, the technologies of mobility and fracturing, and recoverability. It confirms the major transition of Gulong shale from oil generation to oil production, which has extremely significant scientific value and application potential for China’s petroleum industry.

关键词

古龙页岩 / 古龙页岩油 / 微纳米孔隙 / 页理缝 / 陆相产油

Keywords

Gulong shale / Gulong shale oil / Micro-nano pores / Lamellar fracture / Continental oil production

引用本文

导出引用
何文渊, 朱如凯, 崔宝文. 古龙页岩油——揭示陆相页岩从生油到产油的另一个地学新领域. Engineering. 2023, 28(9): 79-92 https://doi.org/10.1016/j.eng.2022.08.018

参考文献

[1]
C.H. Pan. Geological notes: non-marine origin of petroleum in north Shensi, and the Cretaceous of Szechuan, China. China AAPG Bull, 25 (1941), pp. 2058-2068
[2]
L.D. Sun. Gulong shale oil (preface). Pet Geol Oilfield Dev Daqing, 39 (3) (2020), pp. 1-7 [Chinese].
[3]
L.D. Sun, H. Liu, W.Y. He, G.X. Li, S.C. Zhang, R.K. Zhu, et al. An analysis of major scientific problems and research paths of Gulong shale oil in Daqing Oilfield, NE China. Pet Explor Dev, 48 (3) (2021), pp. 527-540
[4]
G.Y. Wang, F.L. Wang, B. Zhao, G.X. Sun, Q.A. Meng, Y.Z. Wang, et al. Exploration and development situation and development strategy of Daqing Oilfield Company. China Pet Explor, 26 (2021), pp. 45-63
[5]
Y.H. Wang, J.P. Liang, J.Y. Zhang, B. Zhao, Y. Zhao, X. Liu, et al. Resource potential and exploration direction of Gulong shale oil in Songliao Basin. Pet Geol Oilfield Dev Daqing, 39 (2020), pp. 20-34 [Chinese].
[6]
J.R. Xie. Petroleum. The Commercial Press, Shanghai (1929) [Chinese].
[7]
Z.J. Jin, R.Z. Bai, B. Gao, M.W. Li. Has China ushered in the shale oil and gas revolution?. Oil Gas Geol, 40 (2019), pp. 451-458 [Chinese].
[8]
Z.J. Jin, R.K. Zhu, X.P. Liang, Y.Q. Shen. Several issues worthy of attention in current lacustrine shale oil exploration and development. Pet Explor Dev, 48 (6) (2021), pp. 1471-1484
[9]
W.Z. Zhao, S.Y. Hu, L.H. Hou, T. Yang, X. Li, B.C. Guo, et al. Types and resource potential of continental shale oil in China and its boundary with tight oil. Pet Explor Dev, 47 (1) (2020), pp. 1-11
[10]
W.Z. Zhao, R.K. Zhu, S.Y. Hu, L.H. Hou, S.T. Wu. Accumulation contribution differences between lacustrine organic-rich shales and mudstones and their significance in shale oil evaluation. Pet Explor Dev, 47 (6) (2020), pp. 1160-1171
[11]
Y.S. Ma, X.Y. Cai, P.R. Zhao, Z.Q. Hu, H.M. Liu, B. Gao, et al. Geological characteristics and exploration practices of continental shale oil in China. Acta Geol Sin, 96 (1) (2022), pp. 155-171 [Chinese].
[12]
R.Q. Gao. Characteristics of petroleum generation and expulsion in abnormal pressure shale zones and the formation of fracture shale reservoirs. Pet Geol Oilfield Dev Daqing, 3 (1984), pp. 160-167 [Chinese].
[13]
S. Jiang, X.L. Tang, O. Steve, A. Thomas. Enrichment factors and current misunderstanding of shale oil and gas: case study of shales in US, Argentina and China. Earth Sci, 42 (7) (2017), pp. 1083-1091 [Chinese].
[14]
M.W. Li, X.X. Ma, Q.G. Jiang, Z.M. Li, X.Q. Pang, C.C. Zhang. Enlightenment from formation conditions and enrichment characteristics of marine shale oil in North America. Pet Geol Recovery Effic, 26 (1) (2019), pp. 13-28 [Chinese]. DOI: 10.3847/1538-4365/ab2465
[15]
G.P. Bai, H.H. Qiu, Z.Z. Deng, W.Y. Wang, J. Chen. Distribution and main controls for shale oil resources in USA. Pet Geol Exp, 42 (4) (2020), pp. 524-532 [Chinese]. DOI: 10.1080/10916466.2020.1772819
[16]
J.H. Fu, S.X. Li, X.B. Niu, X.Q. Deng, X.P. Zhou. Geological characteristics and exploration of shale oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin. NW China. Pet Explor Dev, 47 (5) (2020), pp. 931-945
[17]
S.T. Fu, Z.J. Jin, J.H. Fu, S.X. Li, W.W. Yang. Transformation of understanding from tight oil to shale oil in the Member 7 of Yanchang Formation in Ordos Basin and its significance of exploration and development. Acta Petrol Sin, 42 (2021), pp. 561-569 [Chinese].
[18]
D.M. Zhi, Y. Tang, Z.F. Yang, X.G. Guo, M.L. Zheng, M. Wan, et al. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer Sag, Junggar Basin. Oil Gas Geol, 40 (2019), pp. 524-536 [Chinese].
[19]
X.Z. Zhao, L.H. Zhou, X.G. Pu, F.M. Jin, W.Z. Han, D.Q. Xiao, et al. Geological characteristics of shale rock system and shale oil exploration breakthrough in a lacustrine basin: a case study from the Paleogene 1st sub-member of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China. Pet Explor Dev, 45 (3) (2018), pp. 377-388. DOI: 10.3724/sp.j.1249.2018.04377
[20]
X.Z. Zhao, L.H. Zhou, X.G. Pu, F.M. Jin, Z.N. Shi, W.Z. Han, et al. Formation conditions and enrichment model of retained petroleum in lacustrine shale: a case study of the Paleogene in Huanghua depression, Bohai Bay Basin, China. Pet Explor Dev, 47 (5) (2020), pp. 916-930
[21]
M.Y. Li, S.T. Wu, S.Y. Hu, R.K. Zhu, S.W. Meng, J.R. Yang. Lamination texture and its effects on reservoir and geochemical properties of the Paleogene Kongdian Formation in the Cangdong Sag, Bohai Bay Basin, China. Minerals, 11 (12) (2021), p. 1360. DOI: 10.3390/min11121360
[22]
G.Q. Song, X.Y. Xu, Z. Li, X.H. Wang. Factors controlling oil production from Paleogene shale in Jiyang depression. Oil Gas Geol, 36 (2015), pp. 463-471 [Chinese].
[23]
H.M. Liu, B.S. Yu, Z.H. Xie, S.Y. Han, Z.H. Shen, C.Y. Bai. Characteristics and implications of micro-lithofacies in lacustrine basin organic-rich shale: a case study of Jiyang depression, Bohai Bay Basin. Acta Petrol Sin, 39 (2018), pp. 1328-1343 [Chinese].
[24]
G.X. Li, R.K. Zhu, Y.S. Zhang, Y. Chen, J.W. Cui, Y.H. Jiang, et al. Geological characteristics, evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin, NW China. Pet Explor Dev, 49 (1) (2022), pp. 21-36
[25]
C.N. Zou, Z. Yang, H.Y. Wang, D.Z. Dong, H.L. Liu, Z.S. Shi, et al. “Exploring petroleum inside source kitchen”: Jurassic unconventional giant shale oil & gas field in Sichuan Basin, China. Acta Geol Sin, 93 (2019), pp. 1551-1562 [Chinese].
[26]
W.Y. He, H.Q. He, Y.H. Wang, B.W. Cui, Q.A. Meng, X.J. Guo, et al. Major breakthrough and significance of shale oil of the Jurassic Lianggaoshan Formation in Well Ping’an 1 in northeastern Sichuan Basin, China. Pet Explor, 27 (2022), pp. 40-49
[27]
W.Y. He, Q.A. Meng, J.Y. Zhang. Controlling factors and their classification-evaluation of Gulong shale oil enrichment in Songliao Basin. Pet Geol Oilfield Dev Daqing, 40 (2021), pp. 1-12 [Chinese]. DOI: 10.1504/ijepee.2021.10043255
[28]
W.Y. He, Q.A. Meng, Z.H. Feng, J.Y. Zhang, R. Wang. In-situ accumulation theory and exploration & development practice of Gulong shale oil in Songliao Basin. Acta Petrol Sin, 43 (2022), pp. 1-14 [Chinese].
[29]
W.Y. He, B.W. Cui, F.L. Wang, Y.Z. Wang, Q.A. Meng, J.Y. Zhang, et al. Study on reservoir spaces and oil states of the Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin. Geol Rev, 68 (2022), pp. 693-741 [Chinese].
[30]
G.L. Hua, S.T. Wu, J.Y. Zhang, X.H. Yu, M.D. Guan, Y. Zhao, et al. Laminar structure differences and heterogeneities in reservoirs in continental organic-rich shales: the Cretaceous Nenjiang Formation in the Songliao Basin. Interpretation, 10 (3) (2022), pp. SD89-106. DOI: 10.1190/int-2021-0156.1
[31]
Y. Cai, R.K. Zhu, Z. Luo, S.T. Wu, T.S. Zhang, C. Liu, et al. Lithofacies and source rock quality of organic-rich shales in the Cretaceous Qingshankou Formation, Songliao Basin, NE China. Minerals, 12 (4) (2022), p. 465
[32]
Z.H. Feng, W. Fang, X. Wang, C.Y. Huang, Q.L. Huo, J.H. Zhang, et al. Microfossils and molecular records in oil shales of the Songliao Basin and implications for paleo-depositional environment. Sci China Ser D Earth Sci, 52 (2009), p. 1559. DOI: 10.1007/s11430-009-0121-0
[33]
Z.H. Feng, W. Fang, Z.G. Li, X. Wang, Q.L. Huo, C.Y. Huang, et al. Depositional environment of terrestrial petroleum source rocks and geochemical indicators in the Songliao Basin. Sci China Earth Sci, 54 (9) (2011), pp. 1304-1317. DOI: 10.1007/s11430-011-4268-0
[34]
Z.H. Feng, Q.L. Huo, H.S. Zeng, Y.Z. Wang, Y.S. Jia. Organic matter compositions and organic pore evolution in Gulong shale of Songliao Basin. Pet Geol Oilfield Dev Daqing, 40 (2021), pp. 40-55 [Chinese].
[35]
H. Cao, W. He, F. Chen, X. Shan, D. Kong, Q. Hou, et al. Integrated chemostratigraphy (δ 13C-δ 34S-δ 15N) constrains Cretaceous lacustrine anoxic events triggered by marine sulfate input. Chem Geol, 559 (2021), Article 119912
[36]
G.D. Zheng, Q.T. Meng, Z.J. Liu. Paleolimnological information of oil shale in 1st member of Qingshankou Formation in northern Songliao Basin. J Jilin Univ, 50 (2) (2020), pp. 392-404 [Chinese].
[37]
W.L. Yang, R.Q. Gao, Q.F. Guo, Y.G. Liu. Continental petroleum generation, migration and accumulation in the Songliao Basin. Heilongjiang Science & Technology Press, Harbin (1985) [Chinese].
[38]
R.Q. Gao, X.Y. Cai. Forming conditions and distribution of petroleum fields in the Songliao Basin. Petroleum Industry Press, Beijing (1997) [Chinese].
[39]
Q.J. Hou, Z.Q. Feng, Z.H. Feng. Continental petroleum geology in the Songliao Basin. Petroleum Industry Press, Beijing (2009) [Chinese].
[40]
B.P. Tissot, D.H. Welte.Petroleum formation and occurrence. ( 2nd ed.), Springer verlag, Berlin (1984)
[41]
J.P. Chen, Y.G. Sun, N.N. Zhong, Z.K. Huang, C.P. Deng, L.J. Xie, et al. The efficiency and model of petroleum expulsion from the lacustrine source rocks within geological frame. Acta Geol Sin, 88 (2014), pp. 2005-2032 [Chinese].
[42]
J.J. Sweeney, A.K. Burnham. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics. AAPG Bull, 74 (10) (1990), pp. 1559-1570
[43]
M.J. Wilson, L. Wilson, M.V. Shaldybin. Clay mineralogy and unconventional hydrocarbon shale reservoirs in the USA. II. Implications of predominantly illitic clays on the physico-chemical properties of shales. Earth Sci Rev, 158 (2016), pp. 1-8. DOI: 10.1097/01.EEM.0000508429.81220.5b
[44]
K.L. Milliken, M. Rudnicki, D.N. Awwiller, T.W. Zhang. Organic matter-hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bull, 97 (2013), pp. 177-200. DOI: 10.1306/07231212048
[45]
S.T. Wu, Z. Yang, X.F. Zhai, J.W. Cui, L.S. Bai, S.Q. Pan, et al. An experimental study of organic matter, minerals and porosity evolution in shales within high-temperature and high-pressure constraints. Mar Pet Geol, 102 (2019), pp. 377-390
[46]
F.W.G. Julia, E.L. Stephen, E.O. Jon, E. Peter, F. András. Natural fractures in shale: a review and new observations. AAPG Bull, 98 (11) (2014), pp. 2165-2216
[47]
M. Pommer, K. Milliken. Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, southern Texas. AAPG Bull, 99 (9) (2015), pp. 1713-1744. DOI: 10.1306/03051514151
[48]
C.Z. Jia, X.Q. Pang, Y. Song. The mechanism of unconventional hydrocarbon formation: hydrocarbon self-sealing and intermolecular forces. Pet Explor Dev, 48 (3) (2021), pp. 507-526
[49]
T. Hu, X.Q. Pang, F.J. Jiang, Q.F. Wang, X.H. Liu, Z. Wang, et al. Movable oil content evaluation of lacustrine organic-rich shales: methods and a novel quantitative evaluation model. Earth Sci Rev, 214 (2021), Article 103545
[50]
Y.J. Han, B. Horsfield, R. Wirth, N. Mahlstedt, S. Bernard. Oil retention and porosity evolution in organic-rich shales. AAPG Bull, 101 (06) (2017), pp. 807-827. DOI: 10.1306/09221616069
[51]
Y.J. Han, B. Horsfield, N. Mahlstedt, R. Wirth, D.J. Curry, H. LaReau. Factors controlling source and reservoir characteristics in the Niobrara shale oil system, Denver Basin. AAPG Bull, 103 (9) (2019), pp. 2045-2072. DOI: 10.1306/0121191619717287
[52]
K.E. Gorynski, M.H. Tobey, D.A. Enriquez, T.M. Smagala, J.L. Dreger, R.E. Newhart. Quantification and characterization of hydrocarbon filled porosity in oil-rich shales using integrated thermal extraction, pyrolysis, and solvent extraction. AAPG Bull, 103 (3) (2019), pp. 723-744. DOI: 10.1306/08161817214
[53]
M.F. Romero-Sarmiento. A quick analytical approach to estimate both free versus sorbed hydrocarbon contents in liquid-rich source rocks. AAPG Bull, 103 (9) (2019), pp. 2031-2043. DOI: 10.1306/02151918152
PDF(5879 KB)

Accesses

Citation

Detail

段落导航
相关文章

/