[1] |
A. De Santis, B. Siciliano, A. De Luca, A. Bicchi. An atlas of physical human-robot interaction. Mechanism Mach Theory, 43 (3) ( 2008), pp. 253-270
|
[2] |
Y. Li, S.S. Ge. Human-robot collaboration based on motion intention estimation. IEEE/ASME Trans Mechatron, 19 (3) ( 2014), pp. 1007-1014
|
[3] |
C.P. Day. Robotics in industry—their role in intelligent manufacturing. Engineering, 4 (4) ( 2018), pp. 440-445
|
[4] |
B. Wang. The future of manufacturing: a new perspective. Engineering, 4 (5) ( 2018), pp. 722-728
|
[5] |
J. Krüger, T.K. Lien, A. Verl. Cooperation of human and machines in assembly lines. CIRP Ann, 58 (2) ( 2009), pp. 628-646
|
[6] |
Ding H, Schipper M, Matthias B. Optimized task distribution for industrial assembly in mixed human-robot environments—case study on IO module assembly. In:Proceedings of 2014 IEEE International Conference on Automation Science and Engineering (CASE); 2014 Aug 18-22; Taipei, China. IEEE; 2014. p. 19-24.
|
[7] |
H. Bley, G. Reinhart, G. Seliger, M. Bernardi, T. Korne. Appropriate human involvement in assembly and disassembly. CIRP Ann, 53 (2) ( 2004), pp. 487-509
|
[8] |
Bonilla BL, Asada HH. A robot on the shoulder coordinated human-wearable robot control using Coloured Petri Nets and Partial Least Squares predictions. In:Proceedings of 2014 IEEE International Conference on Robotics and Automation (ICRA); 2014 May 31-Jun 7; Hong Kong, China. IEEE; 2014. p. 119-25.
|
[9] |
Liu C, Tomizuka M. Modeling and controller design of cooperative robots in workspace sharing human-robot assembly teams. In:Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2014 Sep 14-18; Chicago, IL, USA. IEEE; 2014. p. 1386-91.
|
[10] |
L. Roveda, M. Magni, M. Cantoni, D. Piga, G. Bucca. Human-robot collaboration in sensorless assembly task learning enhanced by uncertainties adaptation via Bayesian optimization. Robot Auton Syst, 136 ( 2021), Article 103711
|
[11] |
J. Jiang, Z. Huang, Z. Bi, X. Ma, G. Yu. State-of-the-art control strategies for robotic PiH assembly. Robot Comput Integr Manuf, 65 ( 2020), Article 101894
|
[12] |
A. Realyvásquez-Vargas, K.C. Arredondo-Soto, J.L. García-Alcaraz, B.Y. Márquez-Lobato, J. Cruz-García. Introduction and configuration of a collaborative robot in an assembly task as a means to decrease occupational risks and increase efficiency in a manufacturing company. Robot Comput Integr Manuf, 57 ( 2019), pp. 315-328
|
[13] |
K. Ramirez-Amaro, M. Beetz, G. Cheng. Transferring skills to humanoid robots by extracting semantic representations from observations of human activities. Artif Intell, 247 ( 2017), pp. 95-118
|
[14] |
B. Huang, M. Li, R.L. De Souza, J.J. Bryson, A. Billard. A modular approach to learning manipulation strategies from human demonstration. Auton Robots, 40 (5) ( 2016), pp. 903-927 DOI: 10.1007/s10514-015-9501-9
|
[15] |
C. Yang, C. Zeng, P. Liang, Z. Li, R. Li, C.Y. Su. Interface design of a physical human-robot interaction system for human impedance adaptive skill transfer. IEEE Trans Autom Sci Eng, 15 (1) ( 2018), pp. 329-340
|
[16] |
C. Yang, C. Zeng, C. Fang, W. He, Z. Li. A DMPs-based framework for robot learning and generalization of humanlike variable impedance skills. IEEE/ASME Trans Mechatron, 23 (3) ( 2018), pp. 1193-1203 DOI: 10.1109/tmech.2018.2817589
|
[17] |
A. Mörtl, M. Lawitzky, A. Kucukyilmaz, M. Sezgin, C. Basdogan, S. Hirche. The role of roles: physical cooperation between humans and robots. Int J Robot Res, 31 (13) ( 2012), pp. 1656-1674 DOI: 10.1177/0278364912455366
|
[18] |
R.B. Gillespie, J.E. Colgate, M.A. Peshkin. A general framework for robot control. IEEE Trans Robot Autom, 17 (4) ( 2001), pp. 391-401
|
[19] |
M.S. Erden, A. Billard. Robotic assistance by impedance compensation for hand movements while manual welding. IEEE Trans Cybern, 46 (11) ( 2016), pp. 2459-2472
|
[20] |
N. Jarrassé, V. Sanguineti, E. Burdet. Slaves no longer: review on role assignment for human-robot joint motor action. Adapt Behav, 22 (1) ( 2014), pp. 70-82 DOI: 10.1177/1059712313481044
|
[21] |
S. Musić, S. Hirche. Control sharing in human-robot team interaction. Annu Rev Contr, 44 ( 2017), pp. 342-354
|
[22] |
M. Khoramshahi, A. Billard. A dynamical system approach to task-adaptation in physical human-robot interaction. Auton Robots, 43 (4) ( 2019), pp. 927-946 DOI: 10.1007/s10514-018-9764-z
|
[23] |
R. Zhang, Q. Lv, J. Li, J. Bao, T. Liu, S. Liu. A reinforcement learning method for human-robot collaboration in assembly tasks. Robot Comput Integr Manuf, 73 (2022), Article 102227
|
[24] |
N. Hogan. Impedance control: an approach to manipulation: part II—implementation. J Dyn Sys Meas Control, 107 (1) ( 1985), pp. 8-16 DOI: 10.1115/1.3140713
|
[25] |
X. Zhao, B. Tao, L. Qian, Y. Yang, H. Ding. Asymmetrical nonlinear impedance control for dual robotic machining of thin-walled workpieces. Robot Comput Integr Manuf, 63 ( 2020), Article 101889
|
[26] |
S. Cremer, S.K. Das, I.B. Wijayasinghe, D.O. Popa, F.L. Lewis. Model-free online neuroadaptive controller with intent estimation for physical human-robot interaction. IEEE Trans Robot, 36 (1) ( 2020), pp. 240-253 DOI: 10.1109/tro.2019.2946721
|
[27] |
E. Burdet, R. Osu, D.W. Franklin, T.E. Milner, M. Kawato. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature, 414 (6862) ( 2001), pp. 446-449
|
[28] |
Y. Li, G. Ganesh, N. Jarrassé, S. Haddadin, A. Albu-Schaeffer, E. Burdet. Force, impedance, and trajectory learning for contact tooling and haptic identification. IEEE Trans Robot, 34 (5) ( 2018), pp. 1170-1182 DOI: 10.1109/tro.2018.2830405
|
[29] |
X. Chen, N. Wang, H. Cheng, C. Yang. Neural learning enhanced variable admittance control for human-robot collaboration. IEEE Access, 8 ( 2020), pp. 25727-25737 DOI: 10.1109/access.2020.2969085
|
[30] |
L. Roveda, J. Maskani, P. Franceschi, A. Abdi, F. Braghin, L. Molinari Tosatti, et al.. Model-based reinforcement learning variable impedance control for human-robot collaboration. J Intell Robot Syst, 100 (2) ( 2020), pp. 417-433 DOI: 10.1007/s10846-020-01183-3
|
[31] |
X. Zhao, S. Han, B. Tao, Z. Yin, H. Ding. Model-based actor-critic learning of robotic impedance control in complex interactive environment. IEEE Trans Ind Electron, 69 (12) ( 2022), pp. 13225-13235 DOI: 10.1109/tie.2021.3134082
|
[32] |
N. Jarrassé, T. Charalambous, E. Burdet. A framework to describe, analyze and generate interactive motor behaviors. PLoS One, 7 (11) ( 2012), p. e49945 DOI: 10.1371/journal.pone.0049945
|
[33] |
Y. Li, G. Carboni, F. Gonzalez, D. Campolo, E. Burdet. Differential game theory for versatile physical human-robot interaction. Nat Mach Intell, 1 (1) ( 2019), pp. 36-43
|
[34] |
R. Gervasi, L. Mastrogiacomo, F. Franceschini. A conceptual framework to evaluate human-robot collaboration. Int J Adv Manuf Technol, 108 (3) ( 2020), pp. 841-865 DOI: 10.1007/s00170-020-05363-1
|
[35] |
D. Mukherjee, K. Gupta, L.H. Chang, H. Najjaran. A survey of robot learning strategies for human-robot collaboration in industrial settings. Robot Comput Integr Manuf, 73 ( 2022), Article 102231
|
[36] |
Xing H, Torabi A, Ding L, Gao H, Li W, Mushahwar VK, et al. Human-robot collaboration for heavy object manipulation: Kinesthetic teaching of the role of wheeled mobile manipulator. In:Proceedings of 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2021 Sep 27-Oct 1; Prague, Czech Republic. IEEE; 2021. p. 2962-9.
|
[37] |
W. Kim, L. Peternel, M. Lorenzini, J. Babič, A. Ajoudani. A human-robot collaboration framework for improving ergonomics during dexterous operation of power tools. Robot Comput Integr Manuf, 68 (2021), Article 102084
|
[38] |
L. Peternel, N. Tsagarakis, D. Caldwell, A. Ajoudani. Robot adaptation to human physical fatigue in human-robot co-manipulation. Auton Robots, 42 (5) ( 2018), pp. 1011-1021 DOI: 10.1007/s10514-017-9678-1
|
[39] |
V. Gopinath, K. Johansen, M. Derelöv, Å. Gustafsson, S. Axelsson. Safe collaborative assembly on a continuously moving line with large industrial robots. Robot Comput Integr Manuf, 67 (2021), Article 102048
|
[40] |
V. Villani, F. Pini, F. Leali, C. Secchi. Survey on human-robot collaboration in industrial settings: safety, intuitive interfaces and applications. Mechatronics, 55 ( 2018), pp. 248-266
|
[41] |
A. Ajoudani, A.M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Kosuge, O. Khatib. Progress and prospects of the human-robot collaboration. Auton Robots, 42 (5) ( 2018), pp. 957-975 DOI: 10.1007/s10514-017-9677-2
|
[42] |
E. Matheson, R. Minto, E.G.G. Zampieri, M. Faccio, G. Rosati. Human-robot collaboration in manufacturing applications: a review. Robotics, 8 (4) ( 2019), p. 100 DOI: 10.3390/robotics8040100
|
[43] |
H. Liu, L. Wang. Gesture recognition for human-robot collaboration: a review. Int J Ind Ergon, 68 ( 2018), pp. 355-367
|
[44] |
H. Liu, L. Wang. Remote human-robot collaboration: a cyber-physical system application for hazard manufacturing environment. J Manuf Syst, 54 ( 2020), pp. 24-34
|
[45] |
O. Khatib. A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J Robot Autom, 3 (1) ( 1987), pp. 43-53
|
[46] |
S.P. Buerger, N. Hogan. Complementary stability and loop shaping for improved human-robot interaction. IEEE Trans Robot, 23 (2) ( 2007), pp. 232-244
|
[47] |
M.S. Branicky. Stability of hybrid systems: State of the art. Proceedings of the 36th IEEE Conference on Decision and Control, IEEE, San Diego, CA, USA (1997 Dec 12), pp. 120-125
|