一种静电纺具有超高分子链取向纳米纤维的通用策略

文显, 熊健, 孙朝阳, 王黎明, 俞建勇, 覃小红

工程(英文) ›› 2023, Vol. 29 ›› Issue (10) : 179-187.

PDF(2543 KB)
PDF(2543 KB)
工程(英文) ›› 2023, Vol. 29 ›› Issue (10) : 179-187. DOI: 10.1016/j.eng.2022.09.008
研究论文
Article

一种静电纺具有超高分子链取向纳米纤维的通用策略

作者信息 +

A General Strategy to Electrospin Nanofibers with Ultrahigh Molecular Chain Orientation

Author information +
History +

摘要

聚合物分子链取向度是决定纤维机械性质和物理性能的关键结构参数。然而,理解和大幅调控纤维大分子链取向仍面临巨大挑战。本文提出一种新型的静电纺丝方法,通过控制纺丝过程中的电场来有效调节分子链取向。与典型的静电纺丝相比,新型静电纺丝通过将电场施加在圆环上而非针头上来分离控制电场。得益于这一变化,实现了一种新的电场分布,从而产生非单调变化的牵伸作用力。结果表明,聚环氧乙烷(PEO)纳米纤维的大分子链取向得到显著改善,实现了超高红外二向色性比。与此同时,PEO射流细度可有效降低80%左右,纳米纤维直径从约298 nm降低至约114 nm。并且,与普通材料中高取向导致的高结晶度不同,该方法在提高纤维分子链取向度的同时使结晶度从74.9%显著降低至31.7%。这项工作为制备具有优化取向-结晶度特性的先进电纺纳米纤维提供了新的认识。

Abstract

The degree of polymer chain orientation is a key structural parameter that determines the mechanical and physical properties of fibers. However, understanding and significantly tuning the orientation of fiber macromolecular chains remain elusive. Herein, we propose a novel electrospinning technique that can efficiently modulate molecular chain orientation by controlling the electric field. In contrast to the typical electrospinning method, this technique can piecewise control the electric field by applying high voltage to the metal ring instead of the needle. Benefiting from this change, a new electric field distribution can be realized, leading to a non-monotonic change in the drafting force. As a result, the macromolecular chain orientation of polyethylene oxide (PEO) nanofibers was significantly improved with a record-high infrared dichroic ratio. This was further confirmed by the sharp decrease in the PEO jet fineness of approximately 80% and the nanofiber diameter from 298 to 114 nm. Interestingly, the crystallinity can also be adjusted, with an obvious drop from 74.9% to 31.7%, which is different from the high crystallinity caused by oriented chains in common materials. This work guides a new perspective for the preparation of advanced electrospun nanofibers with optimal orientation-crystallinity properties, a merited feature for various applications.

关键词

分子链取向 / 静电纺丝 / 纳米纤维 / 电场 / 聚环氧乙烷

Keywords

Molecular orientation / Electrospinning / Nanofibers / Electric field / Polyethylene oxide

引用本文

导出引用
文显, 熊健, 孙朝阳. 一种静电纺具有超高分子链取向纳米纤维的通用策略. Engineering. 2023, 29(10): 179-187 https://doi.org/10.1016/j.eng.2022.09.008

参考文献

[1]
D. Papkov, Y. Zou, M.N. Andalib, A. Goponenko, S.Z.D. Cheng, Y.A. Dzenis. Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano, 7 (4) ( 2013), pp. 3324-3331. DOI: 10.1021/nn400028p
[2]
D. Papkov, C. Pellerin, Y.A. Dzenis. Polarized Raman analysis of polymer chain orientation in ultrafine individual nanofibers with variable low crystallinity. Macromolecules, 51 (21) ( 2018), pp. 8746-8751. DOI: 10.1021/acs.macromol.8b01869
[3]
L. Deng, G. Chen. Recent progress in tuning polymer oriented microstructures for enhanced thermoelectric performance. Nano Energy, 80 ( 2021), p. 105448
[4]
Y. Liu, C. Pellerin. Highly oriented electrospun fibers of self-assembled inclusion complexes of poly(ethylene oxide) and urea. Macromolecules, 39 (26) ( 2006), pp. 8886-8888. DOI: 10.1021/ma0625408
[5]
T. Kongkhlang, K. Tashiro, M. Kotaki, S. Chirachanchai. Electrospinning as a new technique to control the crystal morphology and molecular orientation of polyoxymethylene nanofibers. J Am Chem Soc, 130 (46) ( 2008), pp. 15460-15466. DOI: 10.1021/ja804185s
[6]
A.W. Laramée, C. Lanthier, C. Pellerin. Electrospinning of highly crystalline polymers for strongly oriented fibers. ACS Appl Polym Mater, 2 (11) ( 2020), pp. 5025-5032. DOI: 10.1021/acsapm.0c00873
[7]
Y. Yang, X. Li, J. Mi, S. Ramakrishna, D. Ji, J. Yu, et al.. Coordinating chain crystallinity and orientation by tailoring electrical stretching for fabrication of super-tough and strong organic fibers. Chem Eng J, 442 ( 2022), p. 136203
[8]
J. Xue, T. Wu, Y. Dai, Y. Xia. Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev, 119 (8) ( 2019), pp. 5298-5415. DOI: 10.1021/acs.chemrev.8b00593
[9]
M. Richard-Lacroix, C. Pellerin. Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules, 46 (24) ( 2013), pp. 9473-9493. DOI: 10.1021/ma401681m
[10]
D. Papkov, N. Delpouve, L. Delbreilh, S. Araujo, T. Stockdale, S. Mamedov, et al.. Quantifying polymer chain orientation in strong and tough nanofibers with low crystallinity: toward next generation nanostructured superfibers. ACS Nano, 13 (5) ( 2019), pp. 4893-4927. DOI: 10.1021/acsnano.8b08725
[11]
X. Wen, J. Xiong, S.L. Lei, L.M. Wang, X.H. Qin. Diameter refinement of electrospun nanofibers: from mechanism, strategies to applications. Adv Fiber Mater, 4 (2) ( 2022), pp. 145-161. DOI: 10.1007/s42765-021-00113-8
[12]
F. Fang, H. Wang, H. Wang, W.M. Huang, Y. Chen, N. Cai, et al.. Stimulus-responsive shrinkage in electrospun membranes: fundamentals and control. Micromachines, 12 (8) ( 2021), p. 920. DOI: 10.3390/mi12080920
[13]
Y. Wang, M. Li, J. Rong, G. Nie, J. Qiao, H. Wang, et al.. Enhanced orientation of PEO polymer chains induced by nanoclays in electrospun PEO/clay composite nanofibers. Colloid Polym Sci, 291 (6) ( 2013), pp. 1541-1546. DOI: 10.1007/s00396-012-2875-8
[14]
M. Richard-Lacroix, C. Pellerin. Raman spectroscopy of individual poly(ethylene oxide) electrospun fibers: effect of the collector on molecular orientation. Vib Spectrosc, 91 ( 2017), pp. 92-98
[15]
T. Yano, Y. Higaki, D.i. Tao, D. Murakami, M. Kobayashi, N. Ohta, et al.. Orientation of poly(vinyl alcohol) nanofiber and crystallites in non-woven electrospun nanofiber mats under uniaxial stretching. Polymer, 53 (21) ( 2012), pp. 4702-4708
[16]
D. Tian, J.H. He. Control of macromolecule chains structure in a nanofiber. Polymers, 12 (10) ( 2020), p. 2305. DOI: 10.3390/polym12102305
[17]
Z. Song, X. Hou, L. Zhang, S. Wu. Enhancing crystallinity and orientation by hot-stretching to improve the mechanical properties of electrospun partially aligned polyacrylonitrile (PAN) nanocomposites. Materials, 4 (4) ( 2011), pp. 621-632. DOI: 10.3390/ma4040621
[18]
S. Hao, N. Pingjuan, N. Pingfan. The auxiliary electrode can improve the electric field distribution of the roller electrostatic spinning. IOP Conf Ser Earth Environ Sci, 358 (5) ( 2019), p. 052077. DOI: 10.1088/1755-1315/358/5/052077
[19]
X. Li, F.G. Bian, J.Y. Lin, Y.C. Zeng. Effect of electric field on the morphology and mechanical properties of electrospun fibers. RSC Adv, 6 (56) ( 2016), pp. 50666-50672
[20]
H.T. Niu, T. Lin, X.G. Wang. Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J Appl Polym Sci, 114 (6) ( 2009), pp. 3524-3530. DOI: 10.1002/app.30891
[21]
D.Y. Lin, D.C. Martin. Orientation development in electrospun liquid-crystalline polymer nanofibers. Polymeric Nanofibers, 918 ( 2006), pp. 330-342. DOI: 10.1021/bk-2006-0918.ch023
[22]
M. Richard-Lacroix, C. Pellerin. Orientation and partial disentanglement in individual electrospun fibers: diameter dependence and correlation with mechanical properties. Macromolecules, 48 (13) ( 2015), pp. 4511-4519. DOI: 10.1021/acs.macromol.5b00994
[23]
M.V. Kakade, S. Givens, K. Gardner, K.H. Lee, D.B. Chase, J.F. Rabolt. Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers. J Am Chem Soc, 129 (10) ( 2007), pp. 2777-2782. DOI: 10.1021/ja065043f
[24]
X. Li, J. Lin, Y.C. Zeng. Electric field distribution and initial jet motion induced by spinneret configuration for molecular orientation in electrospun fibers. Eur Polym J, 98 ( 2018), pp. 330-336
[25]
S. Lei, C. Xiong, Z. Quan, X. Qin, J. Yu. Controlled stretching of the first spiral in electrospinning whipping jet via surface charge. Polymer, 217 ( 2021), p. 123443
[26]
A. Gupta, P. Ayithapu, R. Singhal. Study of the electric field distribution of various electrospinning geometries and its effect on the resultant nanofibers using finite element simulation. Chem Eng Sci, 235 ( 2021), p. 116463
[27]
C.L. Pai, M.C. Boyce, G.C. Rutledge. Mechanical properties of individual electrospun PA 6(3)T fibers and their variation with fiber diameter. Polymer, 52 (10) ( 2011), pp. 2295-2301
[28]
Z. Song, S.W. Chiang, X. Chu, H. Du, J. Li, L. Gan, et al.. Effects of solvent on structures and properties of electrospun poly(ethylene oxide) nanofibers. J Appl Polym Sci, 135 (5) ( 2018), p. 45787
[29]
C. Lu, S.W. Chiang, H. Du, J. Li, L. Gan, X. Zhang, et al.. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer, 115 ( 2017), pp. 52-59
[30]
I. Greenfeld, K. Fezzaa, M.H. Rafailovich, E. Zussman. Fast X-ray phase-contrast imaging of electrospinning polymer jets: measurements of radius, velocity, and concentration. Macromolecules, 45 (8) ( 2012), pp. 3616-3626. DOI: 10.1021/ma300237j
[31]
W. Wang, A.H. Barber. Diameter-dependent melting behaviour in electrospun polymer fibres. Nanotechnology, 21 (22) ( 2010), p. 225701. DOI: 10.1088/0957-4484/21/22/225701
[32]
K. Pielichowski, K. Flejtuch. Phase behavior of poly(ethylene oxide) studied by modulated-temperature DSC—influence of the molecular weight. J Macromol Sci B, 43 (2) ( 2004), pp. 459-470
[33]
X.F. Wu, Y. Salkovskiy, Y.A. Dzenis. Modeling of solvent evaporation from polymer jets in electrospinning. Appl Phys Lett, 98 (22) ( 2011), p. 223108

This work was partly supported by the grants (51973027 and 52003044) from the National Natural Science Foundation of China, the Fundamental Research Funds for the Central Universities (2232020A-08), International Cooperation Fund of Science and Technology Commission of Shanghai Municipality (21130750100), and Major Scientific and Technological Innovation Projects of Shandong Province (2021CXGC011004). This work has also been supported by the Chang Jiang Scholars Program and the Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-03-E00023) to Prof. Xiaohong Qin, Young Elite Scientists Sponsorship Program by China Association for Science and Technology, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (KF2216), and Donghua University Distinguished Young Professor Program to Prof. Liming Wang.

PDF(2543 KB)

Accesses

Citation

Detail

段落导航
相关文章

/