基于正交质谱的N-糖组谱揭示哈夫病潜在病原学

Si Liu, Yuanyuan Liu, Jiajing Lin, Bi-Feng Liu, Zhenyu He, Xiaomin Wu, Xin Liu

工程(英文) ›› 2021, Vol. 26 ›› Issue (7) : 63-73.

PDF(1930 KB)
PDF(1930 KB)
工程(英文) ›› 2021, Vol. 26 ›› Issue (7) : 63-73. DOI: 10.1016/j.eng.2022.09.012
Article

基于正交质谱的N-糖组谱揭示哈夫病潜在病原学

作者信息 +

Novel Insight into the Etiology of Haff Disease by Mapping the N-Glycome with Orthogonal Mass Spectrometry

Author information +
History +

摘要

食用煮熟的小龙虾可能导致哈夫病(HD),该病被认为是由不明毒素引起的,而病因尚不清楚。N-糖组的剖析将有助于破译疾病的分子机制,而HD相关的糖基化从未被探索过。2019—2020 年,本研究团队招募了来自武汉市疾病预防控制中心的90 份HD患者和对照组血清样本。本文中,采用基于高通量的正交质谱对HD中血清和血清衍生的免疫球蛋白G(IgG) N-糖组谱进行了表征。数据显示,HD与总血清糖蛋白的核心岩藻糖基化和单半乳糖基化升高有关。血清IgG 水平是诊断HD患者的良好指标。此外,IgG的差异半乳糖基化和唾液酸化与HD密切相关。值得注意的是,IgG1 和IgG2 的半乳糖基化和唾液酸化的变化具有亚类特异性。有意义的是,IgG2 或IgG3/4 的唾液酸化和半乳糖基化改变与HD的临床标志物密切相关。本研究揭示了差异化IgG N-糖基化与HD的关联,为这种罕见疾病的病因提供了新的见解。

Abstract

Consumption of boiled crayfish may lead to Haff disease (HD), which is considered to result from an unidentified toxin, although the etiology is still obscure. Profiling of the N-glycome in HD would assist in deciphering the underlying molecular mechanism of the disease, whereas HD-associated glycosylation has never been explored. Herein, we enrolled 90 serum samples with HD patients and healthy controls from the Wuhan Center for Disease Control & Prevention between 2019 and 2020. N-glycome profiles of both serum and serum-derived immunoglobulin G (IgG) in HD were characterized by means of high-throughput-based orthogonal mass spectrometry. It was observed that HD is associated with an increase in the core fucosylation and mono-galactosylation of total serum glycoproteins. The serum level of IgG was found to serve as a good indicator for HD patients. In addition, differential galactosylation and sialylation of IgG were strongly correlated with HD. It was notable that the changes in the galactosylation and sialylation of IgG1 and IgG2 were subclass specific. Interestingly, altered sialylation and galactosylation of IgG2 or IgG3/4 strongly correlated with clinical markers for HD. Our study reveals the association of differential IgG N-glycosylation with HD, providing new insight into the etiology of this rare disease.

关键词

哈夫病 / 全血清 / IgG抗体 / N-糖基化 / 疾病病原学

Keywords

Haff disease / Serum / Immunoglobulin G / Glycosylation / Disease pathogenesis

引用本文

导出引用
Si Liu, Yuanyuan Liu, Jiajing Lin. 基于正交质谱的N-糖组谱揭示哈夫病潜在病原学. Engineering. 2021, 26(7): 63-73 https://doi.org/10.1016/j.eng.2022.09.012

参考文献

[1]
Diaz JH. Global incidence of rhabdomyolysis after cooked seafood consumption (Haff disease). Clin Toxicol 2015;53(5):421–6.
[2]
Buchholz U, Mouzin E, Dickey R, Moolenaar R, Sass N, Mascola L. Haff disease: from the Baltic Sea to the US shore. Emerg Infect Dis 2000;6(2):192–5.
[3]
Taniyama S, Sagara T, Nishio S, Kuroki R, Asakawa M, Noguchi T, et al. Survey of food poisoning incidents in Japan due to ingestion of marine boxfish and their toxicity. Shokuhin Eiseigaku Zasshi 2009;50(5):270–7. Japanese.
[4]
Huang X, Li Y, Huang Q, Liang J, Liang C, Chen B, et al. A past Haff disease outbreak associated with eating freshwater pomfret in south China. BMC Public Health 2013;13(1):447.
[5]
Giannoglou GD, Chatzizisis YS, Misirli G. The syndrome of rhabdomyolysis: pathophysiology and diagnosis. Eur J Intern Med 2007;18(2):90–100.
[6]
Chan TY. The emergence and epidemiology of Haff disease in China. Toxins 2016;8(12):359.
[7]
Dang K, Jiang S, Gao Y, Qian A. The role of protein glycosylation in muscle diseases. Mol Biol Rep 2022;49(8):8037–49.
[8]
Paton B, Suarez M, Herrero P, Canela N. Glycosylation biomarkers associated with age-related diseases and current methods for glycan analysis. Int J Mol Sci 2021;22(11):5788.
[9]
Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nat Rev Nephrol 2019;15(6):346–66.
[10]
Reiding KR, Ruhaak LR, Uh HW, El Bouhaddani S, van den Akker EB, Plomp R, et al. Human plasma N-glycosylation as analyzed by matrix-assisted laser desorption/ionization-fourier transform ion cyclotron resonance-MS associates with markers of inflammation and metabolic health. Mol Cell Proteomics 2017;16(2):228–42.
[11]
Zhang Y, Jiao J, Yang P, Lu H. Mass spectrometry-based N-glycoproteomics for cancer biomarker discovery. Clin Proteomics 2014;11(1):18.
[12]
Adamczyk B, Tharmalingam T, Rudd PM. Glycans as cancer biomarkers. Biochim Biophys Acta 2012;1820(9):1347–53.
[13]
Hart GW, Wells L. Glycoproteomics: making the study of the most structurally diverse and most abundant post-translational modifications more accessible to the scientific community. Mol Cell Proteomics 2021;20:100086.
[14]
Gao X, Song X, Zuo R, Yang D, Ji C, Ji H, et al. Ionophore toxin maduramicin produces haff disease-like rhabdomyolysis in a mouse model. Int J Environ Res Public Health 2020;17(21):7882.
[15]
Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol 2010;17(7):1055–65.
[16]
Anthony RM, Wermeling F, Ravetch JV. Novel roles for the IgG Fc glycan. Ann N Y Acad Sci 2012;1253(1):170–80.
[17]
Cobb BA. The history of IgG glycosylation and where we are now. Glycobiology 2020;30(4):202–13.
[18]
Wang X, Mathieu M, Brezski RJ. IgG Fc engineering to modulate antibody effector functions. Protein Cell 2018;9(1):63–73.
[19]
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014;5:520.
[20]
Van Helden PM, van den Berg HM, Gouw SC, Kaijen PH, Zuurveld MG, MauserBunschoten EP, et al. IgG subclasses of anti-FVIII antibodies during immune tolerance induction in patients with hemophilia A. Br J Haematol 2008;142 (4):644–52.
[21]
Liu S, Cheng L, Fu Y, Liu BF, Liu X. Characterization of IgG N-glycome profile in colorectal cancer progression by MALDI-TOF-MS. J Proteomics 2018;181:225–37.
[22]
Liu X, Qiu H, Lee RK, Chen W, Li J. Methylamidation for sialoglycomics by MALDI-MS: a facile derivatization strategy for both a2,3- and a2,6-linked sialic acids. Anal Chem 2010;82(19):8300–6.
[23]
Zhang Q, Feng X, Li H, Liu BF, Lin Y, Liu X. Methylamidation for isomeric profiling of sialylated glycans by nanoLC-MS. Anal Chem 2014;86 (15):7913–9.
[24]
Liu S, Fu Y, Huang Z, Liu Y, Liu BF, Cheng L, et al. A comprehensive analysis of subclass-specific IgG glycosylation in colorectal cancer progression by nanoLCMS/MS. Analyst 2020;145(8):3136–47.
[25]
Kang P, Mechref Y, Novotny MV. High-throughput solid-phase permethylation of glycans prior to mass spectrometry. Rapid Commun Mass Spectrom 2008;22(5):721–34.
[26]
Zhang Z, Westhrin M, Bondt A, Wuhrer M, Standal T, Holst S. Serum protein Nglycosylation changes in multiple myeloma. Biochim Biophys Acta, Gen Subj 2019;1863(5):960–70.
[27]
Liu Y, Wang C, Wang R, Wu Y, Zhang L, Liu BF, et al. Isomer-specific profiling of N-glycans derived from human serum for potential biomarker discovery in pancreatic cancer. J Proteomics 2018;181:160–9.
[28]
Kao D, Danzer H, Collin M, Groß A, Eichler J, Stambuk J, et al. A monosaccharide residue is sufficient to maintain mouse and human IgG subclass activity and directs IgG effector functions to cellular Fc receptors. Cell Rep 2015;13 (11):2376–85.
[29]
Liu S, Yu Y, Liu Y, Lin J, Fu Y, Cheng L, et al. Revealing the changes of IgG subclass-specific N-glycosylation in colorectal cancer progression by highthroughput assay. Proteomics Clin Appl 2021;15(2–3):e2000022.
[30]
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 1995;57 (1):289–300.
[31]
Bladergroen MR, Reiding KR, Hipgrave Ederveen AL, Vreeker GC, Clerc F, Holst S, et al. Automation of high-throughput mass spectrometry-based plasma Nglycome analysis with linkage-specific sialic acid esterification. J Proteome Res 2015;14(9):4080–6.
[32]
Liu S, Liu X. IgG N-glycans. Adv Clin Chem 2021;105:1–47.
[33]
Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 2015;15(9):540–55.
[34]
Pei P, Li XY, Lu SS, Liu Z, Wang R, Lu XC, et al. The emergence, epidemiology, and etiology of haff disease. Biomed Environ Sci 2019;32 (10):769–78.
[35]
Stanley M, Chippa V, Aeddula NR, Quintanilla Rodriguez BS, Rhabdomyolysis AR. StatPearls. Treasure Island: StatPearls Publishing; 2022.
[36]
Cabral BMI, Edding SN, Portocarrero JP, Lerma EV. Rhabdomyolysis. Dis Mon 2020;66(8):101015.
[37]
Ahmad SC, Sim C, Sinert R. Elevated liver enzymes as a manifestation of haff disease. J Emerg Med 2019;57(6):e181–3.
[38]
Florsheim EB, Sullivan ZA, Khoury-Hanold W, Medzhitov R. Food allergy as a biological food quality control system. Cell 2021;184(6):1440–54.
[39]
Kostrzewa-Nowak D, Kubaszewska J, Nowakowska A, Nowak R. Effect of aerobic and anaerobic exercise on the complement system of proteins in healthy young males. J Clin Med 2020;9(8):2357.
[40]
Dumic´ J, Cvetko A, Abramovic´ I, Šupraha Goreta S, Perovic´ A, Njire Braticˇevic´ M, et al. Changes in specific biomarkers indicate cardiac adaptive and antiinflammatory response of repeated recreational SCUBA diving. Front Cardiovasc Med 2022;9:855682.
[41]
Nimmerjahn F, Ravetch JV. Four keys to unlock IgG. J Exp Med 2021;218(3): E20201753.
[42]
Ohmi Y, Ise W, Harazono A, Takakura D, Fukuyama H, Baba Y, et al. Sialylation converts arthritogenic IgG into inhibitors of collagen-induced arthritis. Nat Commun 2016;7(1):11205.
[43]
Liu J, Liu S, Huang Z, Fu Y, Fei J, Liu X, et al. Associations between the serum levels of PFOS/PFOA and IgG N-glycosylation in adult or children. Environ Pollut 2020;265(Pt A):114285.
[44]
Nimmerjahn F, Ravetch JV. Translating basic mechanisms of IgG effector activity into next generation cancer therapies. Cancer Immun 2012;12:13.
[45]
Gornik O, Pavic´ T, Lauc G. Alternative glycosylation modulates function of IgG and other proteins—implications on evolution and disease. Biochim Biophys Acta 2012;1820(9):1318–26.
[46]
Sondermann P, Pincetic A, Maamary J, Lammens K, Ravetch JV. General mechanism for modulating immunoglobulin effector function. Proc Natl Acad Sci USA 2013;110(24):9868–72.
[47]
Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 2013;13 (3):176–89.
[48]
Li T, DiLillo DJ, Bournazos S, Giddens JP, Ravetch JV, Wang LX. Modulating IgG effector function by Fc glycan engineering. Proc Natl Acad Sci USA 2017;114 (13):3485–90.
[49]
Gudelj I, Lauc G, Pezer M. Immunoglobulin G glycosylation in aging and diseases. Cell Immunol 2018;333:65–79.
[50]
Nishima W, Miyashita N, Yamaguchi Y, Sugita Y, Re S. Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution. J Phys Chem B 2012;116(29):8504–12.
[51]
Jennewein MF, Alter G. The immunoregulatory roles of antibody glycosylation. Trends Immunol 2017;38(5):358–72.
[52]
Verhelst X, Dias AM, Colombel JF, Vermeire S, Van Vlierberghe H, Callewaert N, et al. Protein glycosylation as a diagnostic and prognostic marker of chronic inflammatory gastrointestinal and liver diseases. Gastroenterology 2020;158 (1):95–110.
PDF(1930 KB)

Accesses

Citation

Detail

段落导航
相关文章

/