[1] |
M.J. Deng. Challenges and thoughts on risk management and control for the group construction of a super-long tunnel by TBM. Engineering, 4 (1) (2018), pp. 112-122.
|
[2] |
H.H. Zhu, J.X. Yan, W.H. Liang. Challenges and development prospects of ultra-long and ultra-deep mountain tunnels. Engineering, 5 (3) ( 2019), pp. 384-392. DOI: 10.1039/c8tb03069c
|
[3] |
Z.H. Xu, F.M. Liu, P. Lin, R.Q. Shao, X.S. Shi. Nondestructive, in-situ, fast identification of adverse geology in tunnels based on anomalies analysis of element content. Tunn Undergr Space Technol, 118 (2021), Article 104146.
|
[4] |
G.H. Zhang, W. Chen, Y.Y. Jiao, H. Wang, C.T. Wang. A failure probability evaluation method for collapse of drill-and-blast tunnels based on multistate fuzzy Bayesian network. Eng Geol, 276 (2020), Article 105752.
|
[5] |
F. Huang, C.Z. Wu, P.P. Ni, G.Q. Wan, A.C. Zheng, B.A. Jang, et al. Experimental analysis of progressive failure behavior of rock tunnel with a fault zone using non-contact DIC technique. Int J Rock Mech Min Sci, 132 (2020), Article 104355.
|
[6] |
J.Q. Liu, K.V. Yuen, W.Z. Chen, X.S. Zhou, W. Wang. Grouting for water and mud inrush control in weathered granite tunnel: a case study. Eng Geol, 279 (2020), Article 105896.
|
[7] |
Y.F. Chen, Z. Liao, J.Q. Zhou, R. Hu, Z. Yang, X.J. Zhao, et al. Non-Darcian flow effect on discharge into a tunnel in karst aquifers. Int J Rock Mech Min Sci, 130 (2020), Article 104319.
|
[8] |
Q.M. Gong, L.J. Yin, H.S. Ma, J. Zhao. TBM tunnelling under adverse geological conditions: an overview. Tunn Undergr Space Technol, 57 (2016), pp. 4-17.
|
[9] |
P. Lin, Y. Xiong, Z.H. Xu, W.Y. Wang, R.Q. Shao. Risk assessment of TBM jamming based on Bayesian networks. Bull Eng Geol Environ, 81 (1) (2022), p. 47.
|
[10] |
P. Lin, T.F. Yu, Z.H. Xu, R.Q. Shao, W.Y. Wang.Geochemical, mineralogical, and microstructural characteristics of fault rocks and their impact on TBM jamming: a case study. Bull Eng Geol Environ, 81 ( 2022), p. 64. DOI: 10.2478/rem-2022-0023
|
[11] |
Z.H. Xu, W.Y. Wang, P. Lin, L.C. Nie, J. Wu, Z.M. Li. Hard-rock TBM jamming subject to adverse geological conditions: influencing factor, hazard mode and a case study of Gaoligongshan Tunnel. Tunn Undergr Space Technol, 108 (2021), Article 103683.
|
[12] |
C.P. Lu, B. Liu, B. Liu, Y. Liu, H.Y. Wang, H. Zhang. Anatomy of mining-induced fault slip and a triggered rockburst. Bull Eng Geol Environ, 78 (7) ( 2019), pp. 5147-5160. DOI: 10.1007/s10064-019-01464-8
|
[13] |
Y.T. Sun, G.C. Li, J.F. Zhang, J.D. Huang. Rockburst intensity evaluation by a novel systematic and evolved approach: machine learning booster and application. Bull Eng Geol Environ, 80 (11) ( 2021), pp. 8385-8395. DOI: 10.1007/s10064-021-02460-7
|
[14] |
H.J. Li, J.H. Li, L. Li, H. Xu, J.J. Wei. Prevention of water and sand inrush during mining of extremely thick coal seams under unconsolidated Cenozoic alluvium. Bull Eng Geol Environ, 79 (6) ( 2020), pp. 3271-3283. DOI: 10.1007/s10064-020-01763-5
|
[15] |
W.C. Song, Z.Z. Liang. Theoretical and numerical investigations on mining-induced fault activation and groundwater outburst of coal seam floor. Bull Eng Geol Environ, 80 (7) ( 2021), pp. 5757-5768. DOI: 10.1007/s10064-021-02245-y
|
[16] |
L. Chen, B.T. Shen, B. Dlamini. Effect of faulting on coal burst—a numerical modelling study. Int J Min Sci Technol, 28 (5) (2018), pp. 739-743.
|
[17] |
O. Vardar, C.G. Zhang, I. Canbulat, B. Hebblewhite. A semi-quantitative coal burst risk classification system. Int J Min Sci Technol, 28 (5) (2018), pp. 721-727.
|
[18] |
S.C. Li, L.C. Nie, B. Liu. The practice of forward prospecting of adverse geology applied to hard rock TBM tunnel construction: the case of the Songhua River water conveyance project in the middle of Jilin Province. Engineering, 4 (1) (2018), pp. 131-137.
|
[19] |
P. Lin, S.C. Li, Z.H. Xu, J. Wang, X. Huang. Water inflow prediction during heavy rain while tunneling through karst fissured zones. Int J Geomech, 19 (8) (2019), p. 04019093.
|
[20] |
Z.H. Xu, W. Ma, P. Lin, H. Shi, D.D. Pan, T.H. Liu. Deep learning of rock images for intelligent lithology identification. Comput Geosci, 154 (2021), Article 104799.
|
[21] |
Z.H. Xu, H. Shi, P. Lin, T.H. Liu. Integrated lithology identification based on images and elemental data from rocks. J Petrol Sci Eng, 205 (2021), Article 108853.
|
[22] |
T.X. He, L.Z. Lu, S.X. Li, Y.Q. Lan. Metamorphic petrology. Geology Press, Beijing (1980). [Chinese].
|
[23] |
J. Solum, B. Van der Pluijm, D. Peacor, L. Warr. Influence of phyllosilicate mineral assemblages, fabrics, and fluids on the behavior of the Punchbowl fault, southern California. J Geophys Res, 108 (B5) (2003), p. 2233
|
[24] |
A. Isaacs, J. Evans, S.R. Song, P. Kolesar. Structural, mineralogical, and geochemical characterization of the Chelungpu thrust fault, Taiwan. Terr Atmos Ocean Sci, 18 (2) (2007), pp. 183-221.
|
[25] |
Q.B. Duan, X.S. Yang, S.L. Ma, J.Y. Chen, J.Y. Chen.Fluid-rock interactions in seismic faults: implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China. Tectonophysics, 666 (2016), pp. 260-280.
|
[26] |
W. Kanitpanyacharoen, S. Chornkrathok, C. Morley, H.R. Wenk. Microstructural evolution and deformation mechanisms of Khao Kho Fault, Thailand. J Struct Geol, 136 (2020), Article 104055.
|
[27] |
A.M. Lin, K. Yamashita. Spatial variations in damage zone width along strike-slip faults: an example from active faults in southwest Japan. J Struct Geol, 57 (2013), pp. 1-15.
|
[28] |
R. Wintsch, R. Christoffersen, A.K. Kronenberg. Fluid-rock reaction weakening of fault zones. J Geophys Res, 100 (B7) (1995), pp. 13021-13032
|
[29] |
S. Haines, B. Van der Pluijm. Patterns of mineral transformations in clay gouge, with examples from low-angle normal fault rocks in the western USA. J Struct Geol, 43 (2012), pp. 2-32.
|
[30] |
G.H. Zhang, Y.Y. Jiao, C.X. Ma, H. Wang, L.B. Chen, Z.C. Tang. Alteration characteristics of granite contact zone and treatment measures for inrush hazards during tunnel construction—a case study. Eng Geol, 235 (2018), pp. 64-80.
|
[31] |
Z.H. Xu, T.F. Yu, P. Lin, W.Y. Wang, R.Q. Shao. Integrated geochemical, mineralogical, and microstructural identification of faults in tunnels and its application to TBM jamming analysis. Tunn Undergr Space Technol, 128 (2022), Article 104650.
|
[32] |
G.H. Zhang, C.T. Wang, Y.Y. Jiao, H. Wang, L.B. Chen. Deposits sources of inrush hazards for the Liangshan Tunnel passing through deeply buried granite. Tunn Undergr Space Technol, 92 (2019), Article 103058.
|
[33] |
S.C. Li, Z.H. Xu, X. Huang, P. Lin, X.C. Zhao, Q.S. Zhang, et al. Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels. J Rock Mech Eng, 37 (5) (2018), pp. 1041-1069. [Chinese].
|
[34] |
M. Bounessah, B.P. Atkin. An application of exploratory data analysis (EDA) as a robust non-parametric technique for geochemical mapping in a semi-arid climate. Appl Geochem, 18 (8) (2003), pp. 1185-1195.
|
[35] |
V. Lancianese, E. Dinelli. Different spatial methods in regional geochemical mapping at high density sampling: an application on stream sediment of Romagna Apennines, Northern Italy. J Geochem Explor, 154 (2015), pp. 143-155.
|
[36] |
S.G. Zhou, K.F. Zhou, Y. Cui, J.L. Wang, J.L. Ding. Exploratory data analysis and singularity mapping in geochemical anomaly identification in Karamay, Xinjiang, China. J Geochem Explor, 154 (2015), pp. 171-179
|
[37] |
G. Sarkar, S. Banerjee, S. Maity, H.B. Srivastava. Fluid assisted rejuvenation of precursor brittle fractures as the habitats of ductile shear zones: an example from the ∼2.6 Ga Bundelkhand Granitoid of north-central India. J Struct Geol, 141 (2020), Article 104198.
|
[38] |
J.M. Goddard, J. Evans. Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, USA. J Struct Geol, 17 (4) (1995), pp. 533-547.
|
[39] |
P.D. Zhao, Y.Q. Chen. Digital geology and quantitative mineral exploration. Earth Sci Front, 28 (3) (2021), pp. 1-5. [Chinese].
|
[40] |
R.G. Zuo. Data science-based theory and method of quantitative prediction of mineral resources. Earth Sci Front, 28 (2021), pp. 49-55. [Chinese].
|
[41] |
S. Chapkanski, K. Jacq, G. Brocard, C. Vittori, M. Debret, A.U. De Giorgi, et al. Calibration of short-wave infrared (SWIR) hyperspectral imaging using diffuse reflectance infrared Fourier transform. Sediment Geol, 428 (2022), Article 106062.
|
[42] |
Q. Chen, Z.F. Zhao, J.X. Zhou, R.F. Zhu, J.S. Xia, T. Sun, et al. Aster and GF-5 satellite data for mapping hydrothermal alteration minerals in the Longtoushan Pb-Zn deposit, SW China. Remote Sens, 14 (5) ( 2022), p. 1253. DOI: 10.3390/rs14051253
|
[43] |
R. De La Rosa, M. Khodadadzadeh, L. Tusa, M. Kirsch, G. Gisbert, F. Tornos, et al. Mineral quantification at deposit scale using drill-core hyperspectral data: a case study in the Iberian Pyrite Belt. Ore Geol Rev, 139 (2021), Article 104514.
|
[44] |
J. He, I. Barton. Hyperspectral remote sensing for detecting geotechnical problems at Ray mine. Eng Geol, 292 (2021), Article 106261.
|