基于矿物异常分析的隧道内不良地质识别方法及案例分析

许振浩, 余腾飞, 林鹏, 李术才

工程(英文) ›› 2023, Vol. 27 ›› Issue (8) : 150-160.

PDF(4002 KB)
PDF(4002 KB)
工程(英文) ›› 2023, Vol. 27 ›› Issue (8) : 150-160. DOI: 10.1016/j.eng.2022.09.013
研究论文
Article

基于矿物异常分析的隧道内不良地质识别方法及案例分析

作者信息 +

Adverse Geology Identification Through Mineral Anomaly Analysis During Tunneling: Methodology and Case Study

Author information +
History +

摘要

准确有效地识别不良地质对隧道安全高效施工至关重要。目前隧道内不良地质识别主要依赖于地质学家的经验,容易出现误判和漏判。本研究提出了一种基于矿物异常分析的隧道内不良地质识别方法,本方法基于地质异常理论,将矿物异常作为不良地质的识别标志。本方法首先利用数据探索分析技术(EDA)计算矿物异常阈值,然后根据阈值评估矿物异常,最后根据矿物异常特征识别不良地质。其次,建立了背景样本动态扩充流程,通过调整异常阈值实现对矿物异常的动态评估。最后,本方法已在花岗岩开挖的隧道中得到验证和应用。在隧道里程142+800‒142+860 范围内,根据原岩矿物斜长石和角闪石含量的异常减少,以及蚀变矿物绿泥石、浊沸石和绿帘石含量的异常增加,成功识别出F37断层。当隧道进入不良地质影响的区域时,本研究所提出的方法可提供及时预警,并识别隧道是在逐渐接近断层还是在远离断层。此外,还讨论了本方法的适用性、准确性和进一步改进方向。本方法将隧道内识别不良地质的能力从定性提高至定量,可为隧道及其他地下工程中的不良地质识别提供参考和指导。

Abstract

Accurate and effective identification of adverse geology is crucial for safe and efficient tunnel construction. Current methods of identifying adverse geology depend on the experience of geologists and are prone to misjudgment and omissions. Here, we propose a method for adverse geology identification in tunnels based on mineral anomaly analysis. The method is based on the theory of geoanomaly, and the mineral anomalies are geological markers of the presence of adverse geology. The method uses exploration data analysis (EDA) to calculate mineral anomaly thresholds, then evaluates the mineral anomalies based on the thresholds and identifies adverse geology based on the characteristics of the mineral anomalies. We have established a dynamic expansion process for background samples to achieve the dynamic evaluation of mineral anomalies by adjusting anomaly thresholds. This method has been validated and applied in a tunnel excavated in granite. As shown herein, in the tunnel range of 142 + 800-142 + 860, the fault F37 was successfully identified based on an anomalous decrease in the diagenetic minerals plagioclase and hornblende, as well as an anomalous increase in the content of the alteration minerals chlorite, laumonite, and epidote. The proposed method provides a timely warning when a tunnel enters areas affected by adverse geology and identifies whether the tunnel is gradually approaching or moving away from the fault. In addition, the applicability, accuracy, and further improvement of the method are discussed. This method improves our ability to identify adverse geology, from qualitative to quantitative, and can provide reference and guidance for the identification of adverse geology in mining and underground engineering.

关键词

矿物异常 / 不良地质 / 断层 / 蚀变 / 异常阈值

Keywords

Mineral anomaly / Adverse geology / Fault / Alteration / Anomaly threshold

引用本文

导出引用
许振浩, 余腾飞, 林鹏. 基于矿物异常分析的隧道内不良地质识别方法及案例分析. Engineering. 2023, 27(8): 150-160 https://doi.org/10.1016/j.eng.2022.09.013

参考文献

[1]
M.J. Deng. Challenges and thoughts on risk management and control for the group construction of a super-long tunnel by TBM. Engineering, 4 (1) (2018), pp. 112-122.
[2]
H.H. Zhu, J.X. Yan, W.H. Liang. Challenges and development prospects of ultra-long and ultra-deep mountain tunnels. Engineering, 5 (3) (2019), pp. 384-392. DOI: 10.1039/c8tb03069c
[3]
Z.H. Xu, F.M. Liu, P. Lin, R.Q. Shao, X.S. Shi. Nondestructive, in-situ, fast identification of adverse geology in tunnels based on anomalies analysis of element content. Tunn Undergr Space Technol, 118 (2021), Article 104146.
[4]
G.H. Zhang, W. Chen, Y.Y. Jiao, H. Wang, C.T. Wang. A failure probability evaluation method for collapse of drill-and-blast tunnels based on multistate fuzzy Bayesian network. Eng Geol, 276 (2020), Article 105752.
[5]
F. Huang, C.Z. Wu, P.P. Ni, G.Q. Wan, A.C. Zheng, B.A. Jang, et al. Experimental analysis of progressive failure behavior of rock tunnel with a fault zone using non-contact DIC technique. Int J Rock Mech Min Sci, 132 (2020), Article 104355.
[6]
J.Q. Liu, K.V. Yuen, W.Z. Chen, X.S. Zhou, W. Wang. Grouting for water and mud inrush control in weathered granite tunnel: a case study. Eng Geol, 279 (2020), Article 105896.
[7]
Y.F. Chen, Z. Liao, J.Q. Zhou, R. Hu, Z. Yang, X.J. Zhao, et al. Non-Darcian flow effect on discharge into a tunnel in karst aquifers. Int J Rock Mech Min Sci, 130 (2020), Article 104319.
[8]
Q.M. Gong, L.J. Yin, H.S. Ma, J. Zhao. TBM tunnelling under adverse geological conditions: an overview. Tunn Undergr Space Technol, 57 (2016), pp. 4-17.
[9]
P. Lin, Y. Xiong, Z.H. Xu, W.Y. Wang, R.Q. Shao. Risk assessment of TBM jamming based on Bayesian networks. Bull Eng Geol Environ, 81 (1) (2022), p. 47.
[10]
P. Lin, T.F. Yu, Z.H. Xu, R.Q. Shao, W.Y. Wang.Geochemical, mineralogical, and microstructural characteristics of fault rocks and their impact on TBM jamming: a case study. Bull Eng Geol Environ, 81 (2022), p. 64. DOI: 10.2478/rem-2022-0023
[11]
Z.H. Xu, W.Y. Wang, P. Lin, L.C. Nie, J. Wu, Z.M. Li. Hard-rock TBM jamming subject to adverse geological conditions: influencing factor, hazard mode and a case study of Gaoligongshan Tunnel. Tunn Undergr Space Technol, 108 (2021), Article 103683.
[12]
C.P. Lu, B. Liu, B. Liu, Y. Liu, H.Y. Wang, H. Zhang. Anatomy of mining-induced fault slip and a triggered rockburst. Bull Eng Geol Environ, 78 (7) (2019), pp. 5147-5160. DOI: 10.1007/s10064-019-01464-8
[13]
Y.T. Sun, G.C. Li, J.F. Zhang, J.D. Huang. Rockburst intensity evaluation by a novel systematic and evolved approach: machine learning booster and application. Bull Eng Geol Environ, 80 (11) (2021), pp. 8385-8395. DOI: 10.1007/s10064-021-02460-7
[14]
H.J. Li, J.H. Li, L. Li, H. Xu, J.J. Wei. Prevention of water and sand inrush during mining of extremely thick coal seams under unconsolidated Cenozoic alluvium. Bull Eng Geol Environ, 79 (6) (2020), pp. 3271-3283. DOI: 10.1007/s10064-020-01763-5
[15]
W.C. Song, Z.Z. Liang. Theoretical and numerical investigations on mining-induced fault activation and groundwater outburst of coal seam floor. Bull Eng Geol Environ, 80 (7) (2021), pp. 5757-5768. DOI: 10.1007/s10064-021-02245-y
[16]
L. Chen, B.T. Shen, B. Dlamini. Effect of faulting on coal burst—a numerical modelling study. Int J Min Sci Technol, 28 (5) (2018), pp. 739-743.
[17]
O. Vardar, C.G. Zhang, I. Canbulat, B. Hebblewhite. A semi-quantitative coal burst risk classification system. Int J Min Sci Technol, 28 (5) (2018), pp. 721-727.
[18]
S.C. Li, L.C. Nie, B. Liu. The practice of forward prospecting of adverse geology applied to hard rock TBM tunnel construction: the case of the Songhua River water conveyance project in the middle of Jilin Province. Engineering, 4 (1) (2018), pp. 131-137.
[19]
P. Lin, S.C. Li, Z.H. Xu, J. Wang, X. Huang. Water inflow prediction during heavy rain while tunneling through karst fissured zones. Int J Geomech, 19 (8) (2019), p. 04019093.
[20]
Z.H. Xu, W. Ma, P. Lin, H. Shi, D.D. Pan, T.H. Liu. Deep learning of rock images for intelligent lithology identification. Comput Geosci, 154 (2021), Article 104799.
[21]
Z.H. Xu, H. Shi, P. Lin, T.H. Liu. Integrated lithology identification based on images and elemental data from rocks. J Petrol Sci Eng, 205 (2021), Article 108853.
[22]
T.X. He, L.Z. Lu, S.X. Li, Y.Q. Lan. Metamorphic petrology. Geology Press, Beijing (1980). [Chinese].
[23]
J. Solum, B. Van der Pluijm, D. Peacor, L. Warr. Influence of phyllosilicate mineral assemblages, fabrics, and fluids on the behavior of the Punchbowl fault, southern California. J Geophys Res, 108 (B5) (2003), p. 2233
[24]
A. Isaacs, J. Evans, S.R. Song, P. Kolesar. Structural, mineralogical, and geochemical characterization of the Chelungpu thrust fault, Taiwan. Terr Atmos Ocean Sci, 18 (2) (2007), pp. 183-221.
[25]
Q.B. Duan, X.S. Yang, S.L. Ma, J.Y. Chen, J.Y. Chen.Fluid-rock interactions in seismic faults: implications from the structures and mineralogical and geochemical compositions of drilling cores from the rupture of the 2008 Wenchuan earthquake, China. Tectonophysics, 666 (2016), pp. 260-280.
[26]
W. Kanitpanyacharoen, S. Chornkrathok, C. Morley, H.R. Wenk. Microstructural evolution and deformation mechanisms of Khao Kho Fault, Thailand. J Struct Geol, 136 (2020), Article 104055.
[27]
A.M. Lin, K. Yamashita. Spatial variations in damage zone width along strike-slip faults: an example from active faults in southwest Japan. J Struct Geol, 57 (2013), pp. 1-15.
[28]
R. Wintsch, R. Christoffersen, A.K. Kronenberg. Fluid-rock reaction weakening of fault zones. J Geophys Res, 100 (B7) (1995), pp. 13021-13032
[29]
S. Haines, B. Van der Pluijm. Patterns of mineral transformations in clay gouge, with examples from low-angle normal fault rocks in the western USA. J Struct Geol, 43 (2012), pp. 2-32.
[30]
G.H. Zhang, Y.Y. Jiao, C.X. Ma, H. Wang, L.B. Chen, Z.C. Tang. Alteration characteristics of granite contact zone and treatment measures for inrush hazards during tunnel construction—a case study. Eng Geol, 235 (2018), pp. 64-80.
[31]
Z.H. Xu, T.F. Yu, P. Lin, W.Y. Wang, R.Q. Shao. Integrated geochemical, mineralogical, and microstructural identification of faults in tunnels and its application to TBM jamming analysis. Tunn Undergr Space Technol, 128 (2022), Article 104650.
[32]
G.H. Zhang, C.T. Wang, Y.Y. Jiao, H. Wang, L.B. Chen. Deposits sources of inrush hazards for the Liangshan Tunnel passing through deeply buried granite. Tunn Undergr Space Technol, 92 (2019), Article 103058.
[33]
S.C. Li, Z.H. Xu, X. Huang, P. Lin, X.C. Zhao, Q.S. Zhang, et al. Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels. J Rock Mech Eng, 37 (5) (2018), pp. 1041-1069. [Chinese].
[34]
M. Bounessah, B.P. Atkin. An application of exploratory data analysis (EDA) as a robust non-parametric technique for geochemical mapping in a semi-arid climate. Appl Geochem, 18 (8) (2003), pp. 1185-1195.
[35]
V. Lancianese, E. Dinelli. Different spatial methods in regional geochemical mapping at high density sampling: an application on stream sediment of Romagna Apennines, Northern Italy. J Geochem Explor, 154 (2015), pp. 143-155.
[36]
S.G. Zhou, K.F. Zhou, Y. Cui, J.L. Wang, J.L. Ding. Exploratory data analysis and singularity mapping in geochemical anomaly identification in Karamay, Xinjiang, China. J Geochem Explor, 154 (2015), pp. 171-179
[37]
G. Sarkar, S. Banerjee, S. Maity, H.B. Srivastava. Fluid assisted rejuvenation of precursor brittle fractures as the habitats of ductile shear zones: an example from the ∼2.6 Ga Bundelkhand Granitoid of north-central India. J Struct Geol, 141 (2020), Article 104198.
[38]
J.M. Goddard, J. Evans. Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, USA. J Struct Geol, 17 (4) (1995), pp. 533-547.
[39]
P.D. Zhao, Y.Q. Chen. Digital geology and quantitative mineral exploration. Earth Sci Front, 28 (3) (2021), pp. 1-5. [Chinese].
[40]
R.G. Zuo. Data science-based theory and method of quantitative prediction of mineral resources. Earth Sci Front, 28 (2021), pp. 49-55. [Chinese].
[41]
S. Chapkanski, K. Jacq, G. Brocard, C. Vittori, M. Debret, A.U. De Giorgi, et al. Calibration of short-wave infrared (SWIR) hyperspectral imaging using diffuse reflectance infrared Fourier transform. Sediment Geol, 428 (2022), Article 106062.
[42]
Q. Chen, Z.F. Zhao, J.X. Zhou, R.F. Zhu, J.S. Xia, T. Sun, et al. Aster and GF-5 satellite data for mapping hydrothermal alteration minerals in the Longtoushan Pb-Zn deposit, SW China. Remote Sens, 14 (5) (2022), p. 1253. DOI: 10.3390/rs14051253
[43]
R. De La Rosa, M. Khodadadzadeh, L. Tusa, M. Kirsch, G. Gisbert, F. Tornos, et al. Mineral quantification at deposit scale using drill-core hyperspectral data: a case study in the Iberian Pyrite Belt. Ore Geol Rev, 139 (2021), Article 104514.
[44]
J. He, I. Barton. Hyperspectral remote sensing for detecting geotechnical problems at Ray mine. Eng Geol, 292 (2021), Article 106261.
PDF(4002 KB)

Accesses

Citation

Detail

段落导航
相关文章

/