基于相分离调控的多级纳米结构W-Cu 复合材料的构建及其性能

Chao Hou, Hao Lu, Zhi Zhao, Xintao Huang, Tielong Han, Junhua Luan, Zengbao Jiao, Xiaoyan Song, Zuoren Nie

工程(英文) ›› 2023, Vol. 26 ›› Issue (7) : 173-184.

PDF(4775 KB)
PDF(4775 KB)
工程(英文) ›› 2023, Vol. 26 ›› Issue (7) : 173-184. DOI: 10.1016/j.eng.2022.09.017
研究论文
Article

基于相分离调控的多级纳米结构W-Cu 复合材料的构建及其性能

作者信息 +

Performance of a Hierarchically Nanostructured W–Cu Composite Produced via Mediating Phase Separation

Author information +
History +

摘要

采用相分离调控技术解决了粉末冶金制备纳米结构钨铜(W-Cu)复合材料的难题。以铝(Al)作为媒介体,通过缓慢的异步相分离制备出具有多级纳米结构(HN)的W-Cu 复合材料。该复合材料不仅包含由Cu相和W-Cu 纳米结构组成的双重网络,在W基体中还弥散分布着体心立方结构的含Al 纳米颗粒。与
本征W/Cu界面相比,Al 调制的W/Cu界面和共格W/含Al 颗粒界面可有效转移电子并且产生电子间强耦合作用,使得界面具有更低的能量和更高的键合强度。由于具有大量的稳定异质界面以及界面的“自锁”结构,HN W-Cu 复合材料表现出优异的抵抗塑性变形能力。该复合材料的硬度和压缩强度显著优于其他烧结制备的具有相同Cu含量的W-Cu 复合材料。在往复滑动载荷作用下,高化学活性的Al 可避免基体过度氧化,由摩擦作用转变的表层结构具有良好的硬度和韧性匹配,因此表现出优异的耐磨性。本研究为不互溶组元金属基复合材料的结构设计、界面调控以及服役性能提升提供了一种新的策略。

Abstract

The challenge of fabricating nanostructured W–Cu composites by powder metallurgy has been solved by means of modulated phase separation. A hierarchically nanostructured (HN) W–Cu composite was prepared using intermediary Al through sluggish asynchronous phase separation. In addition to a dual network composed of a Cu phase and the W–Cu nanostructure, dense Al-containing nanoprecipitates with a body-centered cubic (bcc) structure are distributed in the W matrix. Compared with a pristine W/Cu interface, the newly formed W/Cu interfaces modulated by Al and the coherent W/Al-containing particle interfaces possess lower energy and enhanced bonding strength due to efficient electron transfer and strong coupling interactions. With a large number of stable heterogeneous interfaces and a ″self-locking″ geometry, the HN W–Cu composite exhibits excellent resistance against plastic deformation. The combination of the presented composite's hardness and compressive strength outperforms all other sintered W–Cu composites with the same Cu content. Under a reciprocating sliding load, the reactive Al prevents excessive oxidation. The excellent synergy of the hardness and toughness of the friction-induced surface endows the HN composite with high abrasion resistance. This study provides a new strategy to modulate the structure and energy state of interfaces in metallic composites containing immiscible components in order to achieve high mechanical performance.

关键词

不互溶组元复合材料 / 相分离 / 纳米结构 / 力学性能 / 界面调控

Keywords

Immiscible-component composite / Phase separation / Nanostructure / Mechanical properties / Interface modulation

引用本文

导出引用
Chao Hou, Hao Lu, Zhi Zhao. 基于相分离调控的多级纳米结构W-Cu 复合材料的构建及其性能. Engineering. 2023, 26(7): 173-184 https://doi.org/10.1016/j.eng.2022.09.017

参考文献

[1]
Wang J, Zhou Q, Shao S, Misra A. Strength and plasticity of nanolaminated materials. Mater Res Lett 2017;5(1):1–19.
[2]
McCue I, Ryan S, Hemker K, Xu XD, Li N, Chen MW, et al. Size effects in the mechanical properties of bulk bicontinuous Ta/Cu nanocomposites made by liquid metal dealloying. Adv Eng Mater 2016;18(1):46–50.
[3]
Dong LL, Ahangarkani M, Chen WG, Zhang YS. Recent progress in development of tungsten–copper composites: fabrication, modification and applications. Int J Refract Met Hard Mater 2018;75:30–42.
[4]
Hou C, Song XY, Tang FW, Li YR, Cao LJ, Wang J, et al. W–Cu composites with submicron- and nanostructures: progress and challenges. NPG Asia Mater 2019;11(1):74.
[5]
Johnson JL. Activated liquid phase sintering of W–Cu and Mo–Cu. Int J Refract Met Hard Mater 2015;53(Pt B):80–6.
[6]
Carpenter JS, Vogel SC, LeDonne JE, Hammon DL, Beyerlein IJ, Mara NA. Bulk texture evolution of Cu–Nb nanolamellar composites during accumulative roll bonding. Acta Mater 2012;60(4):1576–86.
[7]
Wen SP, Zong RL, Zeng F, Gao Y, Pan F. Evaluating modulus and hardness enhancement in evaporated Cu/W multilayers. Acta Mater 2007;55 (1):345–51.
[8]
Zeng LF, Gao R, Fang QF, Wang XP, Xie ZM, Miao S, et al. High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding. Acta Mater 2016;110:341–51.
[9]
Hoagland RG, Hirth JP, Misra A. On the role of weak interfaces in blocking slip in nanoscale layered composites. Philos Mag 2006;86(23):3537–58.
[10]
Zbib HM, Overman CT, Akasheh F, Bahr D. Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Int J Plast 2011;27(10):1618–39.
[11]
Mara NA, Bhattacharyya D, Hirth JP, Dickerson P, Misra A. Mechanism for shear banding in nanolayered composites. Appl Phys Lett 2010;97(2):021909.
[12]
Dong SJ, Chen TJ, Huang SX, Li N, Zhou CZ. Thickness-dependent shear localization in Cu/Nb metallic nanolayered composites. Scr Mater 2020;187:323–8.
[13]
Zheng SJ, Wang J, Carpenter JS, Mook WM, Dickerson PO, Mara NA, et al. Plastic instability mechanisms in bimetallic nanolayered composites. Acta Mater 2014;79:282–91.
[14]
Cui YC, Derby B, Li N, Mara NA, Misra A. Suppression of shear banding in highstrength Cu/Mo nanocomposites with hierarchical bicontinuous intertwined structures. Mater Res Lett 2018;6(3):184–90.
[15]
Chen Y, Li N, Hoagland RG, Liu XY, Baldwin JK, Beyerlein IJ, et al. Effects of three-dimensional Cu/Nb interfaces on strengthening and shear banding in nanoscale metallic multilayers. Acta Mater 2020;199:593–601.
[16]
Du JL, Huang Y, Xiao C, Liu YC. Building metallurgical bonding interfaces in an immiscible Mo/Cu system by irradiation damage alloying (IDA). J Mater Sci Technol 2018;34(4):689–94.
[17]
Yang WF, Beyerlein IJ, Jin QQ, Ge HL, Xiong T, Yang LX, et al. Strength and ductility of bulk Cu/Nb nanolaminates exposed to extremely high temperatures. Scr Mater 2019;166:73–7.
[18]
Cui YC, Derby B, Li N, Misra A. Design of bicontinuous metallic nanocomposites for high-strength and plasticity. Mater Des 2019;166:107602.
[19]
Murdoch HA, Schuh CA. Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design. J Mater Res 2013;28 (16):2154–63.
[20]
Zhou Y, Sun QX, Liu R, Wang XP, Liu CS, Fang QF. Microstructure and properties of fine grained W–15 wt.% Cu composite sintered by microwave from the sol– gel prepared powders. J Alloys Compd 2013;547(2):18–22.
[21]
Maneshian MH, Simchi A. Solid state and liquid phase sintering of mechanically activated W–20 wt.% Cu powder mixture. J Alloys Compd 2008;463(1–2):153–9.
[22]
Guo YJ, Guo HT, Gao BX, Wang XG, Hu YB, Shi ZQ. Rapid consolidation of ultrafine grained W–30 wt.% Cu composites by field assisted sintering from the sol–gel prepared nanopowders. J Alloys Compd 2017;724:155–62.
[23]
Qiu WT, Pang Y, Xiao Z, Li Z. Preparation of W–Cu alloy with high density and ultrafine grains by mechanical alloying and high pressure sintering. Int J Refract Met Hard Mater 2016;61:91–7.
[24]
Wu W, Hou C, Cao L, Liu X, Wang H, Lu H, et al. High hardness and wear resistance of W–Cu composites achieved by elemental dissolution and interpenetrating nanostructure. Nanotechnology 2020;31(13):135704.
[25]
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys Rev B 1996;54 (16):11169–86.
[26]
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 1996;6(1):15–50.
[27]
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999;59(3):1758–75.
[28]
Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett 1996;77(18):3865–8. Erratum in: Phys Rev Lett 1997;78 (7):1396.
[29]
Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B 1976;13(12):5188–92.
[30]
Momma K, Izumi F. VESTA: a three-dimensional visualization system for electronic and structural analysis. J Appl Cryst 2008;41(3):653–8.
[31]
Johansson SAE, Petisme MVG, Wahnström G. A computational study of special grain boundaries in WC–Co cemented carbides. Comput Mater Sci 2015;98:345–53.
[32]
Johansson SAE, Wahnström G. First-principles derived complexion diagrams for phase boundaries in doped cemented carbides. Curr Opin Solid State Mater Sci 2016;20(5):299–307.
[33]
Chen PG, Luo GQ, Li MJ, Shen Q, Zhang LM. Effects of Zn additions on the solidstate sintering of W–Cu composites. Mater Des 2012;36:108–12.
[34]
Huang LM, Luo LM, Zhao ML, Luo GN, Zhu XY, Cheng JG, et al. Effects of TiN nanoparticles on the microstructure and properties of W–30Cu composites prepared via electroless plating and powder metallurgy. Mater Des 2015;81:39–43.
[35]
Shi XL, Yang H, Wang S. Spark plasma sintering of W–15Cu alloy from ultrafine composite powder prepared by spray drying and calcining-continuous reduction technology. Mater Charact 2009;60(2):133–7.
[36]
Taghavi Pourian Azar G, Rezaie HR, Gohari B, Razavizadeh H. Synthesis and densification of W–Cu, W–Cu–Ag and W–Ag composite powders via a chemical precipitation method. J Alloys Compd 2013;574:432–6.
[37]
Zhu X, Cheng JG, Chen PQ, Wei BZ, Gao YF, Gao DL. Preparation and characterization of nanosized W–Cu powders by a novel solution combustion and hydrogen reduction method. J Alloys Compd 2019;793:352–9.
[38]
Wan L, Cheng JG, Fan YM, Liu Y, Zheng ZJ. Preparation and properties of superfine W–20Cu powders by a novel chemical method. Mater Des 2013;51:136–40.
[39]
Luo LM, Tan XY, Lu ZL, Zhu XY, Zan X, Luo GN, et al. Sintering behavior of W– 30Cu composite powder prepared by electroless plating. Int J Refract Met Hard Mater 2014;42:51–6.
[40]
Li Y, Zhang J, Luo GQ, Shen Q, Zhang LM. Densification and properties investigation of W–Cu composites prepared by electroless-plating and activated sintering. Int J Refract Met Hard Mater 2018;71:255–61.
[41]
Chen Q, Li LD, Man XC, Sui H, Liu JP, Guo SD, et al. In-situ synthesis of core– shell structure W(WC) composite grains in W–Cu composites fabricated by infiltration. J Alloys Compd 2021;864:158633.
[42]
Zhang Q, Cheng Y, Chen BJ, Liang SH, Zhuo LC. Microstructure and properties of W–25 wt% Cu composites reinforced with tungsten carbide produced by an in situ reaction. Vacuum 2020;177:109423.
[43]
Zhang Q, Liang SH, Zhuo LC. Microstructure and properties of ultrafine-grained W–25 wt.%Cu composites doped with CNTs. J Mater Res Technol 2019;8 (1):1486–96.
[44]
Huang LM, Luo LM, Cheng JG, Zhu XY, Wu YC. The influence of TiB2 content on microstructure and properties of W–30Cu composites prepared by electroless plating and powder metallurgy. Adv Powder Technol 2015;26(4):1058–63.
[45]
Lu DH, Gu MY, Shi ZL. Materials transfer and formation of mechanically mixed layer in dry sliding wear of metal matrix composites against steel. Tribol Lett 1999;6(1):57–61.
[46]
Hu J, Shi YN, Sauvage X, Sha G, Lu K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 2017;355(6331):1292–6.
[47]
Wang J, Hoagland RG, Hirth JP, Misra A. Atomistic modeling of the interaction of glide dislocations with ‘‘weak” interfaces. Acta Mater 2008;56(19):5685–93.
[48]
Xie FY, Gong L, Liu X, Tao YT, Zhang WH, Chen SH, et al. XPS studies on surface reduction of tungsten oxide nanowire film by Ar+ bombardment. J Electron Spectrosc Relat Phenom 2012;185(3–4):112–8.
[49]
García-Serrano J, Galindo AG, Pal U. Au–Al2O3 nanocomposites: XPS and FTIR spectroscopic studies. Sol Energy Mater Sol Cells 2004;82(1–2):291–8.
[50]
Salleh NFM, Jalil AA, Triwahyono S, Ripin A, Sidik SM, Fatah NAA, et al. New direct consecutive formation of spinel phase in (Fe Co, Ni)Al2O4 composites for enhanced Pd(II) ions removal. J Alloys Compd 2017;727:744–56.
[51]
Chookajorn T, Murdoch HA, Schuh CA. Design of stable nanocrystalline alloys. Science 2012;337(6097):951–4.
[52]
Park M, Schuh CA. Accelerated sintering in phase-separating nanostructured alloys. Nat Commun 2015;6:6858.
[53]
Raghu T, Sundaresan R, Ramakrishnan P, Rama Mohan TR. Synthesis of nanocrystalline copper–tungsten alloys by mechanical alloying. Mater Sci Eng A 2001;304–306:438–41.
[54]
Zhou Q, Li S, Huang P, Xu KW, Wang F, Lu TJ. Strengthening mechanism of super-hard nanoscale Cu/Al multilayers with negative enthalpy of mixing. APL Mater 2016;4(9):096102.
[55]
Beets N, Cui Y, Farkas D, Misra A. Mechanical response of a bicontinuous copper–molybdenum nano-composite: experiments and simulations. Acta Mater 2019;178:79–89.
[56]
Liang CP, Fan JL, Gong HR, Liao X, Zhu X, Peng S. Interface structure and work function of W–Cu interfaces. Appl Phys Lett 2013;103(21):211604.
[57]
Gai YB, Tang FW, Hou C, Lu H, Song XY. First-principles calculation on the influence of alloying elements on interfacial features of W–Cu system. Acta Metall Sin 2020;56(7):1036–46. Chinese.
[58]
Zhou Q, Chen P. Fabrication of W–Cu composite by shock consolidation of Cu-coated W powders. J Alloys Compd 2016;657:215–23.
[59]
Zhang J, Huang Y, Liu Y, Wang Z. Direct diffusion bonding of immiscible tungsten and copper at temperature close to Copper’s melting point. Mater Des 2018;137:473–80.
[60]
Guo W, Wang Y, Liu K, Li S, Zhang H. Effect of copper content on the dynamic compressive properties of fine-grained tungsten copper alloys. Mater Sci Eng A 2018;727:140–7.
[61]
Jiang DF, Long JY, Cai MY, Lin Y, Fan PX, Zhang HJ, et al. Femtosecond laser fabricated micro/nano interface structures toward enhanced bonding strength and heat transfer capability of W/Cu joining. Mater Des 2017;114:185–93.
[62]
Jennings AT, Greer JR. Tensile deformation of electroplated copper nanopillars. Philos Mag 2011;91(7–9):1108–20.
[63]
Li N, Mara NA, Wang J, Dickerson P, Huang JY, Misra A. Ex situ and in situ measurements of the shear strength of interfaces in metallic multilayers. Scr Mater 2012;67(5):479–82.
PDF(4775 KB)

Accesses

Citation

Detail

段落导航
相关文章

/