[1] |
M. Liu, S. Wang, L, Jiang. Nature-inspired superwettability systems. Nat Rev Mater, 2 (7) (2017), p. 17036.
|
[2] |
C. Li, H. Dai, C. Gao, T. Wang, Z. Dong, L. Jiang. Bioinspired inner microstructured tube controlled capillary rise. Proc Natl Acad Sci USA, 116 (26) (2019), pp. 12704-12709.
|
[3] |
M. Lovett, K. Lee, A. Edwards, D.L. Kaplan. Vascularization strategies for tissue engineering. Tissue Eng Part B, 15 (3) (2009), pp. 353-370.
|
[4] |
B. Grigoryan, S.J. Paulsen, D.C. Corbett, D.W. Sazer, C.L. Fortin, A.J. Zaita, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science, 364 (6439) (2019), pp. 458-464.
|
[5] |
I.S. Kinstlinger, S.H. Saxton, G.A. Calderon, K.V. Ruiz, D.R. Yalacki, P.R. Deme, et al. Generation of model tissues with dendritic vascular networks via sacrificial laser-sintered carbohydrate templates. Nat Biomed Eng, 4 (9) (2020), pp. 916-932.
|
[6] |
W.J. Polacheck, M.L. Kutys, J. Yang, J. Eyckmans, Y. Wu, H. Vasavada, et al. A non-canonical Notch complex regulates adherens junctions and vascular barrier function. Nature, 552 (7684) (2017), pp. 258-262.
|
[7] |
L.E. Niklason, J.H. Lawson. Bioengineered human blood vessels. Science, 370 (6513) (2020), Article eaaw8682.
|
[8] |
Q. Jin, A. Bhatta, J.V. Pagaduan, X. Chen, H. West-Foyle, J. Liu, et al. Biomimetic human small muscular pulmonary arteries. Sci Adv, 6 (13) (2020), Article eaaz2598.
|
[9] |
B. Kong, L. Sun, R. Liu, Y. Chen, Y. Shang, H. Tan, et al. Recombinant human collagen hydrogels with hierarchically ordered microstructures for corneal stroma regeneration. Chem Eng J, 428 (2022), Article 131012.
|
[10] |
X. Wang, Y. Yu, C. Yang, C. Shao, K. Shi, L. Shang, et al. Microfluidic 3D printing responsive scaffolds with biomimetic enrichment channels for bone regeneration. Adv Funct Mater, 31 (40) (2021), Article 2105190.
|
[11] |
L. Ouyang, J.P.K. Armstrong, Q. Chen, Y. Lin, M.M. Stevens. Void-free 3D bioprinting for in situ endothelialization and microfluidic perfusion. Adv Funct Mater, 30 (1) (2020), Article 1908349.
|
[12] |
S. Cheng, Y. Jin, N. Wang, F. Cao, W. Zhang, W. Bai, et al. Self-adjusting, polymeric multilayered roll that can keep the shapes of the blood vessel scaffolds during biodegradation. Adv Mater, 29 (28) (2017), Article 1700171.
|
[13] |
T. Su, K. Huang, M.A. Daniele, M.T. Hensley, A.T. Young, J. Tang, et al. Cardiac stem cell patch integrated with microengineered blood vessels promotes cardiomyocyte proliferation and neovascularization after acute myocardial infarction. ACS Appl Mater Interfaces, 10 (39) (2018), pp. 33088-33096.
|
[14] |
L. Shang, Y. Yu, Y. Liu, Z. Chen, T. Kong, Y. Zhao. Spinning and applications of bioinspired fiber systems. ACS Nano, 13 (3) (2019), pp. 2749-2772.
|
[15] |
L. Zhang, Y. Xiang, H. Zhang, L. Cheng, X. Mao, N. An, et al. A biomimetic 3D-self-forming approach for microvascular scaffolds. Adv Sci, 7 (9) (2020), Article 1903553.
|
[16] |
Y. Liu, L. Sun, H. Zhang, L. Shang, Y. Zhao. Microfluidics for drug development: from synthesis to evaluation. Chem Rev, 121 (13) (2021), pp. 7468-7529.
|
[17] |
P. Xu, R. Xie, Y. Liu, G. Luo, M. Ding, Q. Liang. Bioinspired microfibers with embedded perfusable helical channels. Adv Mater, 29 (34) (2017), Article 1701664.
|
[18] |
C. Yang, Y. Yu, X. Wang, L. Shang, Y. Zhao. Programmable knot microfibers from piezoelectric microfluidics. Small, 18 (5) (2022), Article 2104309.
|
[19] |
Y. Yu, F. Fu, L. Shang, Y. Cheng, Z. Gu, Y. Zhao. Bioinspired helical microfibers from microfluidics. Adv Mater, 29 (18) (2017), Article 1605765.
|
[20] |
F. Lin, Z. Wang, L. Xiang, L. Deng, W. Cui. Charge-guided micro/nano-hydrogel microsphere for penetrating cartilage matrix. Adv Funct Mater, 31 (49) (2021), Article 2107678.
|
[21] |
R. Liu, B. Kong, Y. Chen, X. Liu, S. Mi. Formation of helical alginate microfibers using different G/M ratios of sodium alginate based on microfluidics. Sens Actuators B, 304 (2020), Article 127069.
|
[22] |
R. Xie, P. Xu, Y. Liu, L. Li, G. Luo, M. Ding, et al. Necklace-like microfibers with variable knots and perfusable channels fabricated by an oil-free microfluidic spinning process. Adv Mater, 30 (14) (2018), Article 1705082.
|
[23] |
X.Y. Du, Q. Li, G. Wu, S. Chen. Multifunctional micro/nanoscale fibers based on microfluidic spinning technology. Adv Mater, 31 (52) (2019), Article 1903733.
|
[24] |
H. Onoe, T. Okitsu, A. Itou, M. Kato-Negishi, R. Gojo, D. Kiriya, et al. Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater, 12 (6) (2013), pp. 584-590.
|
[25] |
Y. Cheng, Y. Yu, F. Fu, J. Wang, L. Shang, Z. Gu, et al. Controlled fabrication of bioactive microfibers for creating tissue constructs using microfluidic techniques. ACS Appl Mater Interfaces, 8 (2) (2016), pp. 1080-1086.
|
[26] |
X. Shi, S. Ostrovidov, Y. Zhao, X. Liang, M. Kasuya, K. Kurihara, et al. Microfluidic spinning of cell-responsive grooved microfibers. Adv Funct Mater, 25 (15) (2015), pp. 2250-2259.
|
[27] |
E. Kang, Y.Y. Choi, S.K. Chae, J.H. Moon, J.Y. Chang, S.H. Lee. Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Adv Mater, 24 (31) (2012), pp. 4271-4277.
|
[28] |
L. Leng, A. McAllister, B. Zhang, M. Radisic, A. Günther. Mosaic hydrogels: one-step formation of multiscale soft materials. Adv Mater, 24 (27) (2012), pp. 3650-3658.
|
[29] |
Y. Yu, L. Shang, W. Gao, Z. Zhao, H. Wang, Y. Zhao. Microfluidic lithography of bioinspired helical micromotors. Angew Chem Int Ed Engl, 56 (40) (2017), pp. 12127-12131.
|
[30] |
Y. Yu, G. Chen, J. Guo, Y. Liu, J. Ren, T. Kong, et al. Vitamin metal-organic framework-laden microfibers from microfluidics for wound healing. Mater Horiz, 5 (6) (2018), pp. 1137-1142.
|
[31] |
E. Kang, G.S. Jeong, Y.Y. Choi, K.H. Lee, A. Khademhosseini, S.H. Lee. Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat Mater, 10 (11) (2011), pp. 877-883.
|
[32] |
Y. Cheng, F. Zheng, J. Lu, L. Shang, Z. Xie, Y. Zhao, et al. Bioinspired multicompartmental microfibers from microfluidics. Adv Mater, 26 (30) (2014), pp. 5184-5190.
|
[33] |
Y. Yu, L. Shang, J. Guo, J. Wang, Y. Zhao. Design of capillary microfluidics for spinning cell-laden microfibers. Nat Protoc, 13 (11) (2018), pp. 2557-2579.
|
[34] |
L. Jia, F. Han, H. Yang, G. Turnbull, J. Wang, J. Clarke, et al. Microfluidic fabrication of biomimetic helical hydrogel microfibers for blood-vessel-on-a-chip applications. Adv Healthc Mater, 8 (13) (2019), Article 1900435.
|
[35] |
W. Zhuge, H. Liu, W. Wang, J. Wang. Microfluidic bioscaffolds for regenerative engineering. Eng Regen, 3 (1) (2022), pp. 110-120.
|
[36] |
Q. Pi, S. Maharjan, X. Yan, X. Liu, B. Singh, A.M. van Genderen, et al. Digitally tunable microfluidic bioprinting of multilayered cannular tissues. Adv Mater, 30 (43) (2018), Article 1706913.
|
[37] |
D. Wu, Z. Wang, J. Li, Y. Song, M.E.M. Perez, Z. Wang, et al. A 3D-bioprinted multiple myeloma model. Adv Healthc Mater, 11 (7) (2022), Article 2100884.
|