一种基于载银石墨烯和两亲网络的复合防污防腐一体化涂层

田澍, 张晋丽, 刘栓, 李靖宇, 蒲吉斌, 郝豫刚, 应国兵, 薛群基, 卢光明

工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 223-234.

PDF(5546 KB)
PDF(5546 KB)
工程(英文) ›› 2024, Vol. 42 ›› Issue (11) : 223-234. DOI: 10.1016/j.eng.2022.09.019
研究论文

一种基于载银石墨烯和两亲网络的复合防污防腐一体化涂层

作者信息 +

An Integrated Anti-Fouling and Anti-Corrosion Coating Enabled by rGO/AgNPs and Amphiphilic Networks

Author information +
History +

摘要

海洋腐蚀和生物污损是海洋工程装备面临的两大主要挑战,使用功能涂层是一种简单且有效的防护方法。然而,单一涂层很难同时具备防腐蚀和防污性能。在本工作中,我们将还原氧化石墨烯(rGO)/银纳米颗粒(AgNPs)与一种亲水聚合物结合,加入到生物基有机硅-环氧树脂中形成兼具防污和防腐蚀性能的涂层。涂层优异的防污性能源于三重协同防污机制,包括污损释放、接触抑制和水化作用;而优异的防腐蚀性能同样源于三重协同防腐蚀机制,包括形成致密的互穿网络(IPN)结构、屏障效应和钝化。结果显示,所制得的涂层可以有效抵抗蛋白质、细菌、藻类等海洋污损生物的粘附,并通过动态交联的rGO/AgNPs-亲水聚合物网络实现出色的防腐蚀和一定的自愈性能。该研究为海洋工程装备提供了一种防污防腐一体化的防护涂层。

Abstract

Marine corrosion and biofouling are challenges that affect marine industrial equipment, and protecting equipment with functional coatings is a simple and effective approach. However, it is extremely difficult to combine anti-corrosion and anti-fouling properties in a single coating. In this work, we combine reduced graphene oxide (rGO)/silver nanoparticles (AgNPs) with a hydrophilic polymer in a bio-based silicone-epoxy resin to create a coating with both anti-fouling and anti-corrosion properties. The excellent anti-fouling performance of the coating results from a ternary synergistic mechanism involving fouling release, contact inhibition, and a hydration effect, while the outstanding anti-corrosion performance is provided by a ternary synergistic anti-corrosion mechanism that includes a dense interpenetrating network (IPN) structure, a barrier effect, and passivation. The results show that the obtained coating possesses superior anti-fouling activity against protein, bacteria, algae, and other marine organisms, as well as excellent anti-corrosion and certain self-healing properties due to its dynamic cross-linked network of rGO/AgNPs and the hydrophilic polymer. This work provides an anti-corrosion and anti-fouling integrated coating for marine industrial equipment.

关键词

防污 / 防腐蚀 / 载银石墨烯 / 两亲性涂层

Keywords

Anti-fouling / Anti-corrosion / rGO/AgNPs / Amphiphilic coating

引用本文

导出引用
田澍, 张晋丽, 刘栓. 一种基于载银石墨烯和两亲网络的复合防污防腐一体化涂层. Engineering. 2024, 42(11): 223-234 https://doi.org/10.1016/j.eng.2022.09.019

参考文献

[1]
J.A. Callow, M.E. Callow. Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Commun, 2 (1) (2011), p. 244
[2]
S. Guo, X. Zhu, D. Jańczewski, S.S. Lee, T. He, S.L. Teo, et al. Measuring protein isoelectric points by AFM-based force spectroscopy using trace amounts of sample. Nat Nanotechnol, 11 (9) (2016), pp. 817-823
[3]
C.M. Magin, S.P. Cooper, A.B. Brennan. Non-toxic antifouling strategies. Mater Today, 13 (4) (2010), pp. 36-44
[4]
I. Davidson, C. Scianni, C. Hewitt, R. Everett, E. Holm, M. Tamburri, et al. Mini-review: assessing the drivers of ship biofouling management—aligning industry and biosecurity goals. Biofouling, 32 (4) (2016), pp. 411-428
[5]
H. Jin, J. Wang, L. Tian, M. Gao, J. Zhao, L. Ren. Recent advances in emerging integrated antifouling and anticorrosion coatings. Mater Des, 213 (2022), Article 110307
[6]
R.A. King, J.D. Miller. Corrosion by the sulphate-reducing bacteria. Nature, 233 (5320) (1971), pp. 491-492
[7]
M.A. Champ. Economic and environmental impacts on ports and harbors from the convention to ban harmful marine anti-fouling systems. Mar Pollut Bull, 46 (8) (2003), pp. 935-940
[8]
A. Kaffashi, A. Jannesari, Z. Ranjbar. Silicone fouling-release coatings: effects of the molecular weight of poly(dimethylsiloxane) and tetraethyl orthosilicate on the magnitude of pseudobarnacle adhesion strength. Biofouling, 28 (7) (2012), pp. 729-741
[9]
Y. He, I. Dobryden, J. Pan, A. Ahniyaz, T. Deltin, R.W. Corkery, et al. Nano-scale mechanical and wear properties of a waterborne hydroxyacrylic-melamine anti-corrosion coating. Appl Surf Sci, 457 (2018), pp. 548-558
[10]
W. Guo, X. Li, M. Chen, L. Xu, L. Dong, X. Cao, et al. Electrochemical cathodic protection powered by triboelectric nanogenerator. Adv Funct Mater, 24 (42) (2014), pp. 6691-6699
[11]
M.A. Deyab. Anticorrosion properties of nanocomposites coatings: a critical review. J Mol Liq, 313 (2020), Article 113533
[12]
G. Cui, Z. Bi, R. Zhang, J. Liu, X. Yu, Z. Li. A comprehensive review on graphene-based anti-corrosive coatings. Chem Eng J, 373 (2019), pp. 104-121
[13]
R. Ding, S. Chen, J. Lv, W. Zhang, X. Zhao, J. Liu, et al. Study on graphene modified organic anti-corrosion coatings: a comprehensive review. J Alloys Compd, 806 (2019), pp. 611-635
[14]
S.B. Lyon, R. Bingham, D.J. Mills. Advances in corrosion protection by organic coatings: what we know and what we would like to know. Prog Org Coat, 102 (2017), pp. 2-7
[15]
S. Tian, Z. Liu, L. Shen, J. Pu, W. Liu, X. Sun, et al. Performance evaluation of mercapto functional hybrid silica sol-gel coating and its synergistic effect with f-GNs for corrosion protection of copper surface. RSC Adv, 8 (14) (2018), pp. 7438-7449
[16]
I. Omae. General aspects of tin-free antifouling paints. Chem Rev, 103 (9) (2003), pp. 3431-3448
[17]
Z. Lu, Z. Chen, Y. Guo, Y. Ju, Y. Liu, R. Feng, et al. Flexible hydrophobic antifouling coating with oriented nanotopography and nonleaking capsaicin. ACS Appl Mater Interfaces, 10 (11) (2018), pp. 9718-9726
[18]
W. Cai, J. Wang, X. Quan, S. Zhao, Z. Wang. Antifouling and anticorrosion properties of one-pot synthesized dedoped bromo-substituted polyaniline and its composite coatings. Surf Coat Tech, 334 (2018), pp. 7-18
[19]
T. Yimyai, R. Thiramanas, T. Phakkeeree, S. Iamsaard, D. Crespy. Adaptive coatings with anticorrosion and antibiofouling properties. Adv Funct Mater, 31 (37) (2021), Article 2102568
[20]
D. Li, Z. Lin, J. Zhu, J. Yu, J. Liu, Z. Liu, et al. An engineering-oriented approach to construct rough micro/nano-structures for anticorrosion and antifouling application. Colloid Surface A, 621 (2021), Article 126590
[21]
C. Cui, A.T.O. Lim, J. Huang. A cautionary note on graphene anti-corrosion coatings. Nat Nanotechnol, 12 (9) (2017), pp. 834-835
[22]
X. Xu, D. Yi, Z. Wang, J. Yu, Z. Zhang, R. Qiao, et al. Greatly enhanced anticorrosion of Cu by commensurate graphene coating. Adv Mater, 30 (6) (2018), Article 1702944
[23]
F. Fang, P. Song, S. Ran, Z. Guo, H. Wang, Z. Fang. A facile way to prepare phosphorus-nitrogen-functionalized graphene oxide for enhancing the flame retardancy of epoxy resin. Compos Commun, 10 (2018), pp. 97-102
[24]
G. Huang, W. Chen, T. Wu, H. Guo, C. Fu, Y. Xue, et al. Multifunctional graphene-based nano-additives toward high-performance polymer nanocomposites with enhanced mechanical, thermal, flame retardancy and smoke suppressive properties. Chem Eng J, 410 (2021), Article 127590
[25]
B. Ramezanzadeh, Z. Haeri, M. Ramezanzadeh. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chem Eng J, 303 (2016), pp. 511-528
[26]
C.Y. Lee, J.H. Bae, T.Y. Kim, S.H. Chang, S.Y. Kim. Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites. Compos Part A Appl S, 75 (2015), pp. 11-17
[27]
Z. Liu, S. Tian, Q. Li, J. Wang, J. Pu, G. Wang, et al. Integrated dual-functional ORMOSIL coatings with AgNPs@rGO nanocomposite for corrosion resistance and antifouling applications. ACS Sustain Chem Eng, 8 (17) (2020), pp. 6786-6797
[28]
B. Kaur, T. Pandiyan, B. Satpati, R. Srivastava. Simultaneous and sensitive determination of ascorbic acid, dopamine, uric acid, and tryptophan with silver nanoparticles-decorated reduced graphene oxide modified electrode. Colloids Surf B, 111 (2013), pp. 97-106
[29]
L. Zheng, Y. Lin, D. Wang, J. Chen, K. Yang, B. Zheng, et al. Facile one-pot synthesis of silver nanoparticles encapsulated in natural polymeric urushiol for marine antifouling. RSC Adv, 10 (24) (2020), pp. 13936-13943
[30]
D. Jiang, Q. Xue, Z. Liu, J. Han, X. Wu. Novel anti-algal nanocomposite hydrogels based on thiol/acetyl thioester groups chelating with silver nanoparticles. New J Chem, 41 (1) (2017), pp. 271-277
[31]
D. Jiang, Z. Liu, J. Han, X. Wu. A tough nanocomposite hydrogel for antifouling application with quaternized hyperbranched PEI nanoparticles crosslinking. RSC Adv, 6 (65) (2016), pp. 60530-60536
[32]
S. Tian, D. Jiang, J. Pu, X. Sun, Z. Li, B. Wu, et al. A new hybrid silicone-based antifouling coating with nanocomposite hydrogel for durable antifouling properties. Chem Eng J, 370 (2019), pp. 1-9
[33]
Y. Wang, J.A. Finlay, D.E. Betts, T.J. Merkel, J.C. Luft, M.E. Callow, et al. Amphiphilic co-networks with moisture-induced surface segregation for high-performance nonfouling coatings. Langmuir, 27 (17) (2011), pp. 10365-10369
[34]
A. Rahimi, S.J. Stafslien, L. Vanderwal, J. Bahr, M. Safaripour, J.A. Finlay, et al. Critical amphiphilic concentration: effect of the extent of amphiphilicity on marine fouling-release performance. Langmuir, 37 (8) (2021), pp. 2728-2739
[35]
X. Lin, Q. Xie, C. Ma,G. Zhang. Self-healing, highly elastic and amphiphilic silicone-based polyurethane for antifouling coatings. J Mater Chem B, 9 (5) (2021), pp. 1384-1394
[36]
T. Zhang, L. Fang, N. Lin, J. Wang, Y. Wang, T. Wu, et al. Highly transparent, healable, and durable anti-fogging coating by combining hydrophilic pectin and tannic acid with poly(ethylene terephthalate). Green Chem, 21 (19) (2019), pp. 5405-5413
[37]
T. Zhang, Q. Yu, L. Fang, J. Wang, T. Wu, P. Song. All-organic multilayer coatings for advanced poly(lactic acid) films with high oxygen barrier and excellent antifogging properties. ACS Appl Polym Mater, 1 (12) (2019), pp. 3470-3476
[38]
H. Guo, J. Yang, W. Zhao, T. Xu, C. Lin, J. Zhang, et al. Direct formation of amphiphilic crosslinked networks based on PVP as a marine anti-biofouling coating. Chem Eng J, 374 (2019), pp. 1353-1363
[39]
B.R. Yasani, E. Martinelli, G. Galli, A. Glisenti, S. Mieszkin, M.E. Callow, et al. A comparison between different fouling-release elastomer coatings containing surface-active polymers. Biofouling, 30 (4) (2014), pp. 387-399
[40]
Y. Cho, H.S. Sundaram, J.A. Finlay, M.D. Dimitriou, M.E. Callow, J.A. Callow, et al. Reconstruction of surfaces from mixed hydrocarbon and PEG components in water: responsive surfaces aid fouling release. Biomacromolecules, 13 (6) (2012), pp. 1864-1874
[41]
S. Krishnan, R. Ayothi, A. Hexemer, J.A. Finlay, K.E. Sohn, R. Perry, et al. Anti-biofouling properties of comblike block copolymers with amphiphilic side chains. Langmuir, 22 (11) (2006), pp. 5075-5086
[42]
S. Yang, T. Luo, J. Fan, C. Zhou, M. Hu, J. Wang, et al. Performance and mechanisms of PropS-SH/HA coatings in the inhibition of pyrite oxidation. ACS Omega, 6 (47) (2021), pp. 32011-32021
[43]
Y. Liu, J.Y. Dai, X.Q. Liu, J. Luo, S.S. You, J. Zhu, et al. Bio-based epoxy resins derived from eugenol with low dielectric constant. J Electron Packag, 139 (3) (2017), Article 031006
[44]
Y. Dong, Y. Lekbach, Z. Li, D. Xu, S. El Abed, S. Ibnsouda Koraichi, et al. Microbiologically influenced corrosion of 304L stainless steel caused by an alga associated bacterium Halomonas titanicae. J Mater Sci Technol, 37 (2020), pp. 200-206
[45]
Y. Wang, W. Zhao, W. Wu, C. Wang, X. Wu, Q. Xue. Fabricating bionic ultraslippery surface on titanium alloys with excellent fouling-resistant performance. ACS Appl Bio Mater, 2 (1) (2019), pp. 155-162
[46]
S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett, 9 (4) (2009), pp. 1593-1597
[47]
S. Ferraris, M. Miola, A. Cochis, B. Azzimonti, L. Rimondini, E. Prenesti, et al. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols. Appl Surf Sci, 396 (2017), pp. 461-470
[48]
G. Lu, S. Tian, J. Li, Y. Xu, S. Liu, J. Pu. Fabrication of bio-based amphiphilic hydrogel coating with excellent antifouling and mechanical properties. Chem Eng J, 409 (2021), Article 128134
[49]
Y. Yagci, M. Sangermano, G. Rizza. A visible light photochemical route to silver-epoxy nanocomposites by simultaneous polymerization-reduction approach. Polymer, 49 (24) (2008), pp. 5195-5198
[50]
M. Cobos, I. De-La-Pinta, G. Quindós, M.J. Fernández, M.D. Fernández. One-step eco-friendly synthesized silver-graphene oxide/poly(vinyl alcohol) antibacterial nanocomposites. Carbon, 150 (2019), pp. 101-116
[51]
W. Zhao, J. Yang, H. Guo, T. Xu, Q. Li, C. Wen, et al. Slime-resistant marine anti-biofouling coating with PVP-based copolymer in PDMS matrix. Chem Eng Sci, 207 (2019), pp. 790-798
[52]
S. Qiu, G. Liu, W. Li, H. Zhao, L. Wang. Noncovalent exfoliation of graphene and its multifunctional composite coating with enhanced anticorrosion and tribological performance. J Alloys Compd, 747 (2018), pp. 60-70
[53]
S. Zhou, Y. Wu, W. Zhao, J. Yu, F. Jiang, L. Ma. Comparative corrosion resistance of graphene sheets with different structures in waterborne epoxy coatings. Colloids Surf A, 556 (2018), pp. 273-283
[54]
C. Liu, H. Zhao, P. Hou, B. Qian, X. Wang, C. Guo, et al. Efficient graphene/cyclodextrin-based nanocontainer: synthesis and host-guest inclusion for self-healing anticorrosion application. ACS Appl Mater Interfaces, 10 (42) (2018), pp. 36229-36239
[55]
H.Y. Tang, C. Yang, T. Ueki, C.C. Pittman, D. Xu, T.L. Woodard, et al. Stainless steel corrosion via direct iron-to-microbe electron transfer by Geobacter species. ISME J, 15 (10) (2021), pp. 3084-3093
[56]
Y. Lekbach, Y. Dong, Z. Li, D. Xu, S. El Abed, Y. Yi, et al. Catechin hydrate as an eco-friendly biocorrosion inhibitor for 304L stainless steel with dual-action antibacterial properties against Pseudomonas aeruginosa biofilm. Corros Sci, 157 (2019), pp. 98-108
[57]
E. Zhou, F. Li, D. Zhang, D. Xu, Z. Li, R. Jia, et al. Direct microbial electron uptake as a mechanism for stainless steel corrosion in aerobic environments. Water Res, 219 (2022), Article 118553
[58]
H. Qiu, K. Feng, A. Gapeeva, K. Meurisch, S. Kaps, X. Li, et al. Functional polymer materials for modern marine biofouling control. Prog Polym Sci, 127 (2022), Article 101516
[59]
J. Mondal, A. Marques, L. Aarik, J. Kozlova, A. Simões, V. Sammelselg. Development of a thin ceramic-graphene nanolaminate coating for corrosion protection of stainless steel. Corros Sci, 105 (2016), pp. 161-169
[60]
Y. Ye, D. Zhang, J. Li, T. Liu, J. Pu, H. Zhao, et al. One-step synthesis of superhydrophobic polyhedral oligomeric silsesquioxane-graphene oxide and its application in anti-corrosion and anti-wear fields. Corros Sci, 147 (2019), pp. 9-21
[61]
C. Ren, Y. Huang, W. Hao, D. Zhang, X. Luo, L. Ma, et al. Multi-action self-healing coatings with simultaneous recovery of corrosion resistance and adhesion strength. J Mater Sci Technol, 101 (2022), pp. 18-27
[62]
T. Liu, H. Zhao, D. Zhang, Y. Lou, L. Huang, L. Ma, et al. Ultrafast and high-efficient self-healing epoxy coatings with active multiple hydrogen bonds for corrosion protection. Corros Sci, 187 (2021), Article 109485
[63]
X.C. Xia, X.K. Cao, G.Y. Cai, D. Jiang, F. Zhang, Z.H. Dong. Underwater superoleophobic composite coating characteristic of durable antifouling and anticorrosion properties in marine environment. Colloids Surf A, 628 (2021), Article 127323
[64]
C. Liu, C. Ma, Q. Xie, G. Zhang. Self-repairing silicone coatings for marine anti-biofouling. J Mater Chem A, 5 (30) (2017), pp. 15855-15861
[65]
H. Wu, L. Cheng, C. Liu, X. Lan, H. Zhao. Engineering the interface in graphene oxide/epoxy composites using bio-based epoxy-graphene oxide nanomaterial to achieve superior anticorrosion performance. J Colloid Interface Sci, 587 (2021), pp. 755-766
[66]
H. Zhang, T. Liang, Y. Liu, R.D.K. Misra, Y. Zhao. Low-surface-free-energy GO/FSiAC coating with self-healing function for anticorrosion and antifouling applications. Surf Coat Tech, 425 (2021), Article 127690
PDF(5546 KB)

Accesses

Citation

Detail

段落导航
相关文章

/