[1] |
|
[2] |
F. Wen, Z. Zhang, T. He, C. Lee. AI enabled sign language recognition and VR space bidirectional communication using triboelectric smart glove. Nat Commun, 12 ( 2021), p. 5378
|
[3] |
P. Mei, X.Q. Lin, J.W. Yu, A. Boukarkar, P.C. Zhang, Z.Q. Yang. Development of a low radar cross section antenna with band-notched absorber. IEEE Trans Antennas Propag, 66 (2) ( 2018), pp. 582-589. DOI: 10.1109/tap.2017.2780903
|
[4] |
Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv Mater, 25 (9) ( 2013), pp. 1296-1300. DOI: 10.1002/adma.201204196
|
[5] |
Y. Cheng, J.Z.Y. Seow, H. Zhao, Z.J. Xu, G. Ji. A flexible and lightweight biomass-reinforced microwave absorber. Nano Micro Lett, 12 (1) ( 2020), p. 125. DOI: 10.1177/1534734619880741
|
[6] |
F.A. Miranda, G. Subramanyam, F.W. van Keuls, R.R. Romanofsky, J.D. Warner, C.H. Mueller. Design and development of ferroelectric tunable microwave components for Ku- and K-band satellite communication systems. IEEE Trans Microw Theory Tech, 48 (7) ( 2000), pp. 1181-1189
|
[7] |
W. Emerson. Electromagnetic wave absorbers and anechoic chambers through the years. IEEE Trans Antennas Propag, 21 (4) ( 1973), pp. 484-490
|
[8] |
K. Iwaszczuk, A.C. Strikwerda, K. Fan, X. Zhang, R.D. Averitt, P.U. Jepsen. Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt Express, 20 (1) ( 2012), pp. 635-643
|
[9] |
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang, Y. Yang, et al.. Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv Mater, 34 (4) ( 2022), p. 2106195
|
[10] |
Y. Zhao, L. Hao, X. Zhang, S. Tan, H. Li, J. Zheng, et al.. A novel strategy in electromagnetic wave absorbing and shielding materials design: multi-responsive field effect. Small Sci, 2 (2) ( 2022), p. 2100077
|
[11] |
H. Lv, Z. Yang, S.J.H. Ong, C. Wei, H. Liao, S. Xi, et al.. A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv Funct Mater, 29 (14) ( 2019), p. 1900163
|
[12] |
M.M. Lu, M.S. Cao, Y.H. Chen, W.Q. Cao, J. Liu, H.L. Shi, et al.. Multiscale assembly of grape-like ferroferric oxide and carbon nanotubes: a smart absorber prototype varying temperature to tune intensities. ACS Appl Mater Interfaces, 7 (34) ( 2015), pp. 19408-19415. DOI: 10.1021/acsami.5b05595
|
[13] |
B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, et al.. Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater, 26 (21) ( 2014), pp. 3484-3489. DOI: 10.1002/adma.201400108
|
[14] |
B. Shen, W. Zhai, W. Zheng. Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding. Adv Funct Mater, 24 (28) ( 2014), pp. 4542-4548. DOI: 10.1002/adfm.201400079
|
[15] |
D.G. Kim, J.H. Choi, D.K. Choi, S.W. Kim. Highly bendable and durable transparent electromagnetic interference shielding film prepared by wet sintering of silver nanowires. ACS Appl Mater Interfaces, 10 (35) ( 2018), pp. 29730-29740. DOI: 10.1021/acsami.8b07054
|
[16] |
D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, et al.. Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators. Adv Opt Mater, 5 (13) ( 2017), p. 1700109
|
[17] |
C. Zhang, J. Yang, W. Cao, W. Yuan, J. Ke, L. Yang, et al.. Transparently curved metamaterial with broadband millimeter wave absorption. Photon Res, 7 (4) ( 2019), pp. 478-485. DOI: 10.1364/prj.7.000478
|
[18] |
G. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou, G. Ji. Multifunctional integrated transparent film for efficient electromagnetic protection. Nano Micro Lett, 14 ( 2022), p. 65. DOI: 10.13182/t126-37954
|
[19] |
H. Wang, Y. Zhang, C. Ji, C. Zhang, D. Liu, Z. Zhang, et al.. Transparent perfect microwave absorber employing asymmetric resonance cavity. Adv Sci, 6 (19) ( 2019), p. 1901320
|
[20] |
S. Lai, Y. Wu, J. Wang, W. Wu, W. Gu. Optical-transparent flexible broadband absorbers based on the ITO-PET-ITO structure. Opt Mater Express, 8 (6) ( 2018), pp. 1585-1592. DOI: 10.1364/ome.8.001585
|
[21] |
L. Li, R. Xi, H. Liu, Z. Lv. Broadband polarization-independent and low-profile optically transparent metamaterial absorber. Appl Phys Express, 11 (5) ( 2018), p. 052001. DOI: 10.7567/apex.11.052001
|
[22] |
P. Min, Z. Song, L. Yang, B. Dai, J. Zhu. Transparent ultrawideband absorber based on simple patterned resistive metasurface with three resonant modes. Opt Express, 28 (13) ( 2020), pp. 19518-19530. DOI: 10.1364/oe.396812
|
[23] |
C. Huang, B. Zhao, J. Song, C. Guan, X. Luo. Active transmission/absorption frequency selective surface with dynamical modulation of amplitude. IEEE Trans Antennas Propag, 69 (6) ( 2021), pp. 3593-3598. DOI: 10.1109/tap.2020.3037813
|
[24] |
C. Huang, J. Song, C. Ji, J. Yang, X. Luo. Simultaneous control of absorbing frequency and amplitude using graphene capacitor and active frequency-selective surface. IEEE Trans Antennas Propag, 69 (3) ( 2021), pp. 1793-1798. DOI: 10.1109/tap.2020.3011115
|
[25] |
C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, et al.. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat Photonics, 14 (6) ( 2020), pp. 383-390. DOI: 10.1038/s41566-020-0604-2
|
[26] |
Y. Li, J. Lin, H. Guo, W. Sun, S. Xiao, L. Zhou. A tunable metasurface with switchable functionalities: from perfect transparency to perfect absorption. Adv Opt Mater, 8 (6) ( 2020), p. 1901548
|
[27] |
Z. Luo, J. Long, X. Chen, D. Sievenpiper. Electrically tunable metasurface absorber based on dissipating behavior of embedded varactors. Appl Phys Lett, 109 (7) ( 2016), p. 071107
|
[28] |
T. Wu, W. Li, S. Chen, J. Guan. Wideband frequency tunable metamaterial absorber by splicing multiple tuning ranges. Results Phys, 20 ( 2021), p. 103753
|
[29] |
J. Zhang, X. Wei, I.D. Rukhlenko, H.T. Chen, W. Zhu. Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photonics, 7 (1) ( 2019), pp. 265-271
|
[30] |
O. Balci, E.O. Polat, N. Kakenov, C. Kocabas. Graphene-enabled electrically switchable radar-absorbing surfaces. Nat Commun, 6 ( 2015), p. 6628
|
[31] |
J. Zhang, Z. Liu, W. Lu, H. Chen, B. Wu, Q. Liu. A low profile tunable microwave absorber based on graphene sandwich structure and high impedance surface. Int J RF Microw Comput Aided Eng, 30 (2) ( 2020), p. e22022
|
[32] |
W.B. Lu, J.W. Wang, J. Zhang, Z.G. Liu, H. Chen, W.J. Song, et al.. Flexible and optically transparent microwave absorber with wide bandwidth based on graphene. Carbon, 152 ( 2019), pp. 70-76. DOI: 10.1117/12.2539695
|
[33] |
S. Wu, D. Zha, L. Miao, Y. He, J. Jiang. Graphene-based single-layer elliptical pattern metamaterial absorber for adjustable broadband absorption in terahertz range. Phys Scr, 94 (10) ( 2019), p. 105507. DOI: 10.1088/1402-4896/ab0967
|
[34] |
J. Zhang, Z. Li, L. Shao, W. Zhu. Dynamical absorption manipulation in a graphene-based optically transparent and flexible metasurface. Carbon, 176 ( 2021), pp. 374-382
|
[35] |
M. Grande, G.V. Bianco, F.M. Perna, V. Capriati, P. Capezzuto, M. Scalora, et al.. Reconfigurable and optically transparent microwave absorbers based on deep eutectic solvent-gated graphene. Sci Rep, 9 ( 2019), Article 5463
|
[36] |
B. Wu, H.M. Tuncer, M. Naeem, B. Yang, M.T. Cole, W.I. Milne, et al.. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz. Sci Rep, 4 ( 2015), Article 4130
|
[37] |
H. Zhang, C. Hu, J. Yang, L. Tang, D. Huang, L. Shao, et al.. Graphene-based active frequency selective surface in microwave frequency. J Appl Phys, 125 (9) ( 2019), p. 094501
|
[38] |
Y. Huang, G. Wen, W. Zhu, J. Li, L.M. Si, M. Premaratne. Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber. Opt Express, 22 (13) ( 2014), pp. 16408-16417
|
[39] |
M. Lei, N. Feng, Q. Wang, Y. Hao, S. Huang, K. Bi. Magnetically tunable metamaterial perfect absorber. J Appl Phys, 119 (24) ( 2016), p. 244504
|
[40] |
J.F. Lv, C. Ding, F.Y. Meng, J.Q. Han, T. Jin, Q. Wu. A tunable metamaterial absorber based on liquid crystal with the compact unit cell and the wideband absorption. Liq Cryst, 48 (10) ( 2021), pp. 1438-1447. DOI: 10.1080/02678292.2021.1876935
|
[41] |
S. Gao, J. Yang, P. Wang, A. Zheng, H. Lu, G. Deng, et al.. Tunable liquid crystal based phase shifter with a slot unit cell for reconfigurable reflectarrays in F-band. Appl Sci, 8 (12) ( 2018), p. 2528. DOI: 10.3390/app8122528
|
[42] |
Z. Ren, L. Cheng, L. Hu, C. Liu, C. Jiang, S. Yang, et al.. Photoinduced broad-band tunable terahertz absorber based on a VO 2 thin film. ACS Appl Mater Interfaces, 12 (43) ( 2020), pp. 48811-48819. DOI: 10.1021/acsami.0c15297
|
[43] |
F. Ding, S. Zhong, S.I. Bozhevolnyi. Vanadium dioxide integrated metasurfaces with switchable functionalities at terahertz frequencies. Adv Opt Mater, 6 (9) ( 2018), p. 1701204
|
[44] |
Y.G. Jeong, Y.M. Bahk, D.S. Kim. Dynamic terahertz plasmonics enabled by phase-change materials. Adv Opt Mater, 8 (3) ( 2019), p. 19005488
|
[45] |
M. Zhong. Modulation of a multi-band tunable metamaterial with metal disk array. Opt Mater, 106 ( 2020), p. 110023
|
[46] |
Y. Liu, Y. Qian, F. Hu, M. Jiang, L. Zhang. A dynamically adjustable broadband terahertz absorber based on a vanadium dioxide hybrid metamaterial. Results Phys, 19 ( 2020), p. 103384
|
[47] |
X. Li, S. Tang, F. Ding, S. Zhong, Y. Yang, T. Jiang, et al.. Switchable multifunctional terahertz metasurfaces employing vanadium dioxide. Sci Rep, 9 ( 2019), Article 5454
|
[48] |
M. Mao, Y. Liang, R. Liang, L. Zhao, N. Xu, J. Guo, et al.. Dynamically temperature-voltage controlled multifunctional device based on VO 2 and graphene hybrid metamaterials: perfect absorber and highly efficient polarization converter. Nanomaterials, 9 (8) ( 2019), p. 1101. DOI: 10.3390/nano9081101
|
[49] |
S. Chandra, D. Franklin, J. Cozart, A. Safaei, D. Chanda. Adaptive multispectral infrared camouflage. ACS Photonics, 5 (11) ( 2018), pp. 4513-4519. DOI: 10.1021/acsphotonics.8b00972
|
[50] |
W.J.M. Kort-Kamp, S. Kramadhati, A.K. Azad, M.T. Reiten, D.A.R. Dalvit. Passive radiative “thermostat” enabled by phase-change photonic nanostructures. ACS Photonics, 5 (11) ( 2018), pp. 4554-4560. DOI: 10.1021/acsphotonics.8b01026
|
[51] |
X. Lyu, A. Heßler, X. Wang, Y. Cao, L. Song, A. Ludwig, et al.. Combining switchable phase-change materials and phase-transition materials for thermally regulated smart mid-infrared modulators. Adv Opt Mater, 9 (16) ( 2021), p. 2100417
|
[52] |
Q. Wang, B. Shen, J. Huang, H. Yang, G. Pei, H. Yang. A spectral self-regulating parabolic trough solar receiver integrated with vanadium dioxide-based thermochromic coating. Appl Energy, 285 ( 2021), p. 116453
|
[53] |
J. Rensberg, S. Zhang, Y. Zhou, A.S. McLeod, C. Schwarz, M. Goldflam, et al.. Active optical metasurfaces based on defect-engineered phase-transition materials. Nano Lett, 16 (2) ( 2016), pp. 1050-1055. DOI: 10.1021/acs.nanolett.5b04122
|
[54] |
Z. Zhu, P.G. Evans, R.F. Haglund Jr, J.G. Valentine. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett, 17 (8) ( 2017), pp. 4881-4885. DOI: 10.1021/acs.nanolett.7b01767
|
[55] |
T. Kang, Z. Ma, J. Qin, Z. Peng, W. Yang, T. Huang, et al.. Large-scale power-efficient Au/VO 2 active metasurfaces for ultrafast optical modulation. Nanophotonics, 10 (2) ( 2020), pp. 909-918. DOI: 10.1515/nanoph-2020-0354
|
[56] |
J.N. Wang, B. Xiong, R.W. Peng, C.Y. Li, B.Q. Hou, C.W. Chen, et al.. Flexible phase change materials for electrically-tuned active absorbers. Small, 17 (31) ( 2021), p. 2101282
|
[57] |
A. Negm, M. Bakr, M. Howlader, S. Ali. Switching plasmonic resonance in multi-gap infrared metasurface absorber using vanadium dioxide patches. Smart Mater Struct, 30 (7) ( 2021), p. 075011. DOI: 10.1088/1361-665x/abfb86
|
[58] |
Y. Zhang, H. Dong, N. Mou, L. Chen, R. Li, L. Zhang. High-performance broadband electromagnetic interference shielding optical window based on a metamaterial absorber. Opt Express, 28 (18) ( 2020), pp. 26836-26849. DOI: 10.1364/oe.401766
|
[59] |
M. Rahmanzadeh, H. Rajabalipanah, A. Abdolali. Analytical investigation of ultrabroadband plasma-graphene radar absorbing structures. IEEE Trans Plasma Sci, 45 (6) ( 2017), pp. 945-954
|