[1] |
T.C. Yip, H.W. Lee, W.K. Chan, G.L. Wong, V.W. Wong. Asian perspective on NAFLD-associated HCC. J Hepatol, 76 (3) (2022), pp. 726-734.
|
[2] |
R. Loomba, S.L. Friedman, G.I. Shulman. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell, 184 (10) (2021), pp. 2537-2564.
|
[3] |
V.W. Wong, S. Chitturi, G.L. Wong, J. Yu, H.L. Chan, G.C. Farrell. Pathogenesis and novel treatment options for non-alcoholic steatohepatitis. Lancet Gastroenterol Hepatol, 1 (1) (2016), pp. 56-67.
|
[4] |
S.M. Francque, P. Bedossa, V. Ratziu, Q.M. Anstee, E. Bugianesi, A.J. Sanyal, et al. NATIVE Study Group. A randomized, controlled trial of the Pan-PPAR agonist lanifibranor in NASH. N Engl J Med, 385 (17) (2021), pp. 1547-1558.
|
[5] |
T. Shi, L.i. Wu, W. Ma, L. Ju, M. Bai, X. Chen, et al. Nonalcoholic fatty liver disease: pathogenesis and treatment in traditional Chinese medicine and western medicine. Evid Based Complement Alternat Med, 2020 (2020), pp. 1-16.
|
[6] |
L. Huang, Y. Zhang, X. Zhang, X. Chen, Y. Wang, J. Lu, et al. Therapeutic potential of Pien-Tze-Huang: a review on its chemical composition, pharmacology, and clinical application. Molecules, 24 (18) (2019), p. 3274.
|
[7] |
J.K. Lau, X. Zhang, J. Yu. Animal models of non-alcoholic fatty liver disease: current perspectives and recent advances. J Pathol, 241 (1) (2017), pp. 36-44.
|
[8] |
M. Wolf, A. Adili, K. Piotrowitz, Z. Abdullah, Y. Boege, K. Stemmer, et al. Metabolic activation of intrahepatic CD8+ T cells and NKT cells causes nonalcoholic steatohepatitis and liver cancer via cross-talk with hepatocytes. Cancer Cell, 26 (4) (2014), pp. 549-564.
|
[9] |
X. Zhang, O.O. Coker, E.S.H. Chu, K. Fu, H.C.H. Lau, Y.X. Wang, et al. Dietary cholesterol drives fatty liver-associated liver cancer by modulating gut microbiota and metabolites. Gut, 70 (4) (2021), pp. 761-774.
|
[10] |
J.K. Carter, D. Bhattacharya, J.N. Borgerding, M.I. Fiel, J.J. Faith, S.L. Friedman. Modeling dysbiosis of human NASH in mice: loss of gut microbiome diversity and overgrowth of Erysipelotrichales. PLoS One, 16 (1) (2021), e0244763.
|
[11] |
Y. Pan, X. Zhang. Diet and gut microbiome in fatty liver and its associated liver cancer. J Gastroenterol Hepatol, 37 (1) (2022), pp. 7-14.
|
[12] |
H. Chu, Y. Duan, L. Yang, B. Schnabl. Small metabolites, possible big changes: a microbiota-centered view of non-alcoholic fatty liver disease. Gut, 68 (2) (2019), pp. 359-370.
|
[13] |
C.J. Chang, C.S. Lin, C.C. Lu, J. Martel, Y.F. Ko, D.M. Ojcius, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun, 6 (1) (2015), p. 7489.
|
[14] |
Y. Li, X. Ji, H. Wu, X. Li, H. Zhang, D. Tang. Mechanisms of traditional Chinese medicine in modulating gut microbiota metabolites-mediated lipid metabolism. J Ethnopharmacol, 278 (2021), p. 114207.
|
[15] |
X. Zhang, L. Fan, J. Wu, H. Xu, W.Y. Leung, K. Fu, et al. Macrophage p38α promotes nutritional steatohepatitis through M1 polarization. J Hepatol, 71 (1) (2019), pp. 163-174.
|
[16] |
J. Yang, H. Wei, Y. Zhou, C.H. Szeto, C. Li, Y. Lin, et al. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites. Gastroenterology, 162 (1) (2022), pp. 135-149.e2.
|
[17] |
M. Venkatesh, S. Mukherjee, H. Wang, H. Li, K. Sun, A. Benechet, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity, 41 (2) (2014), pp. 296-310.
|
[18] |
N.Y. Lee, M.J. Shin, G.S. Youn, S.J. Yoon, Y.R. Choi, H.S. Kim, et al. Lactobacillus attenuates progression of nonalcoholic fatty liver disease by lowering cholesterol and steatosis. Clin Mol Hepatol, 27 (1) (2021), pp. 110-124.
|
[19] |
A.V. Jäger, P. Arias, M.V. Tribulatti, M.A. Brocco, M.V. Pepe, A. Kierbel. The inflammatory response induced by Pseudomonas aeruginosa in macrophages enhances apoptotic cell removal. Sci Rep, 11 (1) (2021), p. 2393.
|
[20] |
J. Mouries, P. Brescia, A. Silvestri, I. Spadoni, M. Sorribas, R. Wiest, et al. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol, 71 (6) (2019), pp. 1216-1228.
|
[21] |
C.J. Sinal, M. Tohkin, M. Miyata, J.M. Ward, G. Lambert, F.J. Gonzalez. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell, 102 (6) (2000), pp. 731-744.
|
[22] |
J. Zhu, D.i. Zhang, T. Wang, Z. Chen, L. Chen, H. Wu, et al. Target identification of hepatic fibrosis using Pien Tze Huang based on mRNA and lncRNA. Sci Rep, 11 (1) (2021), 16980.
|
[23] |
J. Zhao, H. Hu, Y. Wan, Y. Zhang, L. Zheng, Z. Hong. Pien Tze Huang Gan Bao ameliorates carbon tetrachloride-induced hepatic injury, oxidative stress and inflammation in rats. Exp Ther Med, 13 (5) (2017), pp. 1820-1826.
|
[24] |
H. Zheng, X. Wang, Y. Zhang, L.i. Chen, L. Hua, W. Xu. Pien-Tze-Huang ameliorates hepatic fibrosis via suppressing NF-κB pathway and promoting HSC apoptosis. J Ethnopharmacol, 244 (2019), p. 111856.
|
[25] |
F. Qi, S. Zhou, L. Li, L. Wei, A. Shen, L. Liu, et al. Pien Tze Huang inhibits the growth of hepatocellular carcinoma cells by upregulating miR-16 expression. Oncol Lett, 14 (6) (2017), pp. 8132-8137.
|
[26] |
F. Shen, R.D. Zheng, X.Q. Sun, W.J. Ding, X.Y. Wang, J.G. Fan. Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int, 16 (4) (2017), pp. 375-381.
|
[27] |
L. Zhu, S.S. Baker, C. Gill, W. Liu, R. Alkhouri, R.D. Baker, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH. Hepatology, 57 (2) (2013), pp. 601-609.
|
[28] |
J. Boursier, O. Mueller, M. Barret, M. Machado, L. Fizanne, F. Araujo-Perez, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology, 63 (3) (2016), pp. 764-775.
|
[29] |
L. Hoyles, J.M. Fernández-Real, M. Federici, M. Serino, J. Abbott, J. Charpentier, et al. Molecular phenomics and metagenomics of hepatic steatosis in non-diabetic obese women. Nat Med, 24 (7) (2018), pp. 1070-1080.
|
[30] |
J.R. Mujico, G.C. Baccan, A. Gheorghe, L.E. Díaz, A. Marcos. Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. Br J Nutr, 110 (4) (2013), pp. 711-720.
|
[31] |
H. Ebrahimzadeh Leylabadlo, R. Ghotaslou, H. Samadi Kafil, M.M. Feizabadi, S.Y. Moaddab, S. Farajnia, et al. Non-alcoholic fatty liver diseases: from role of gut microbiota to microbial-based therapies. Eur J Clin Microbiol Infect Dis, 39 (4) (2020), pp. 613-627.
|
[32] |
V.S. Wong, G.H. Wong, A.L. Chim, W.W. Chu, D.W. Yeung, K.T. Li, et al. Treatment of nonalcoholic steatohepatitis with probiotics. A proof-of-concept study. Ann Hepatol, 12 (2) (2013), pp. 256-262.
|
[33] |
C.R. Naudin, K. Maner-Smith, J.A. Owens, G.M. Wynn, B.S. Robinson, J.D. Matthews, et al. Lactococcus lactis subspecies cremoris elicits protection against metabolic changes induced by a western-style diet. Gastroenterology, 159 (2) (2020), pp. 639-651.e5.
|
[34] |
J. Jiang, J. Xiong, J. Ni, C. Chen, K. Wang. Live combined B. subtilis and E. faecium alleviate liver inflammation, improve intestinal barrier function, and modulate gut microbiota in mice with non-alcoholic fatty liver disease. Med Sci Monit, 27 (2021), e931143.
|
[35] |
X.F. Yang, M. Lu, L. You, H. Gen, L. Yuan, T. Tian, et al. Herbal therapy for ameliorating nonalcoholic fatty liver disease via rebuilding the intestinal microecology. Chin Med, 16 (1) (2021), p. 62.
|
[36] |
Q. Song, X. Zhang. The role of gut-liver axis in gut microbiome dysbiosis associated NAFLD and NAFLD-HCC. Biomedicines, 10 (3) (2022), p. 10.
|
[37] |
W. Jia, G. Xie, W. Jia. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol, 15 (2) (2018), pp. 111-128.
|
[38] |
W. Wang, J. Zhao, W. Gui, D. Sun, H. Dai, L.i. Xiao, et al. Tauroursodeoxycholic acid inhibits intestinal inflammation and barrier disruption in mice with non-alcoholic fatty liver disease. Br J Pharmacol, 175 (3) (2018), pp. 469-484.
|
[39] |
F. Huang, X. Zheng, X. Ma, R. Jiang, W. Zhou, S. Zhou, et al. Theabrownin from Pu-erh tea attenuates hypercholesterolemia via modulation of gut microbiota and bile acid metabolism. Nat Commun, 10 (1) (2019), p. 4971.
|