利用木质素合成化学品和升级生物油的电化学生物精炼技术

胡锐, 赵玉莹, 唐晨, 石岩, 罗刚, 范佳珺, James H. Clark, 张士成

工程(英文) ›› 2023, Vol. 27 ›› Issue (8) : 178-198.

PDF(5349 KB)
PDF(5349 KB)
工程(英文) ›› 2023, Vol. 27 ›› Issue (8) : 178-198. DOI: 10.1016/j.eng.2022.10.013
研究论文
Review

利用木质素合成化学品和升级生物油的电化学生物精炼技术

作者信息 +

Electrochemical Biorefinery toward Chemicals Synthesis and Bio-Oil Upgrading from Lignin

Author information +
History +

摘要

木质素的难降解性及其结构固有的非均质性是阻碍木质素基化学品生产工艺推广的主要瓶颈。最近的研究表明,通过电化学生物炼制(一种通过电化学氧化或还原实现木质素增值转化的工艺)进行木质素解聚和木质素衍生生物油升级是一种很有前景的途径。本文介绍了通过电化学生物精炼木质素合成化学品和升级生物油的研究进展,涉及木质素的生物合成途径、木质素电化学转化的反应途径、内层和外层电子传递机制、电化学的基本动力学和热力学,以及最新的实例分析,重点介绍了木质素电化学氧化和还原转化的各自特点和局限性。最后,讨论了与木质素电化学生物炼制相关的挑战和前景。目前的研究结果表明,要提高木质素电化学生物炼制的效率、选择性和稳定性,仍需做更多的工作。将各种类型的木质素电化学转化策略与其他现有或正在发展的木质素价值化技术相结合似乎是最有前景的发展方向之一。本文旨在为木质素电化学生物炼制的发展提供更多参考和讨论。

Abstract

Recalcitrance and the inherent heterogeneity of lignin structure are the major bottlenecks to impede the popularization of lignin-based chemicals production processes. Recent works suggested a promising pathway for lignin depolymerization and lignin-derived bio-oil upgrading via an electrochemical biorefinery (a process in which lignin valorization is performed via electrochemical oxidation or reduction). This review presents the progress on chemicals synthesis and bio-oil upgrading from lignin by an electrochemical biorefinery, relating to the lignin biosynthesis pathway, reaction pathway of lignin electrochemical conversion, inner-sphere and outer-sphere electron transfer mechanism, basic kinetics and thermodynamics in electrochemistry, and the recent embodiments analysis with the emphasis on the respective feature and limitation for lignin electrochemical oxidative and reductive conversion. Lastly, the challenge and perspective associated with lignin electrochemical biorefinery are discussed. Present-day results indicate that more work should be performed to promote efficiency, selectivity, and stability in pursuing a lignin electrochemical biorefinery. One of the most promising developing directions appears to be integrating various types of lignin electrochemical conversion strategies and other existing or evolving lignin valorization technologies. This review aims to provide more references and discussion on the development for lignin electrochemical biorefinery.

关键词

木质素 / 电化学生物炼制 / 反应途径 / 电子转移机制 / 动力学 / 热力学

Keywords

Lignin / Electrochemical biorefinery / Reaction pathway / Electron transfer mechanism / Kinetics / Thermodynamics

引用本文

导出引用
胡锐, 赵玉莹, 唐晨. 利用木质素合成化学品和升级生物油的电化学生物精炼技术. Engineering. 2023, 27(8): 178-198 https://doi.org/10.1016/j.eng.2022.10.013

参考文献

[1]
Statistical review of world energy.71st ed. London: bp; 2022.
[2]
E. Stephens, I.L. Ross, J.H. Mussgnug, L.D. Wagner, M.A. Borowitzka, C. Posten, et al. Future prospects of microalgal biofuel production systems. Trends Plant Sci, 15 (10) (2010), pp. 554-564.
[3]
S.K. Singh. Ionic liquids and lignin interaction: an overview. Bioresour Technol Rep, 17 (2022), Article 100958.
[4]
S.K. Singh. Biological treatment of plant biomass and factors affecting bioactivity. J Clean Prod, 279 (2021), Article 123546.
[5]
G. Liu, Q. Wang, D. Yan, Y. Zhang, C. Wang, S. Liang, et al. Insights into the electrochemical degradation of phenolic lignin model compounds in a protic ionic liquid-water system. Green Chem, 23 (4) (2021), pp. 1665-1677. DOI: 10.1039/d0gc03551c
[6]
C.O. Tuck, E. Pérez, I.T. Horváth, R.A. Sheldon, M. Poliakoff. Valorization of biomass: deriving more value from waste. Science, 337 (6095) (2012), pp. 695-699. DOI: 10.1126/science.1218930
[7]
Y. Cao, M. He, S. Dutta, G. Luo, S. Zhang, D.C.W. Tsang. Hydrothermal carbonization and liquefaction for sustainable production of hydrochar and aromatics. Renew Sustain Energy Rev, 152 (2021), Article 111722.
[8]
X. Shen, C. Zhang, B. Han, F. Wang. Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future. Chem Soc Rev, 51 (5) (2022), pp. 1608-1628. DOI: 10.1039/d1cs00908g
[9]
M.G.A. Da Cruz, B.V.M. Rodrigues, A. Ristic, S. Budnyk, S. Das, A. Slabon. On the product selectivity in the electrochemical reductive cleavage of 2-phenoxyacetophenone, a lignin model compound. Green Chem Lett Rev, 15 (1) (2022), pp. 153-159. DOI: 10.1080/17518253.2022.2025462
[10]
Y. Jia, Y. Wen, X. Han, J. Qi, Z. Liu, S. Zhang, et al. Electrocatalytic degradation of rice straw lignin in alkaline solution through oxidation on a Ti/SnO2-Sb2O3/α-PbO2/β-PbO2 anode and reduction on an iron or tin doped titanium cathode. Catal Sci Technol, 8 (18) (2018), pp. 4665-4677. DOI: 10.1039/c8cy00307f
[11]
B.H. Nguyen, R.J. Perkins, J.A. Smith, K.D. Moeller. Solvolysis, electrochemistry, and development of synthetic building blocks from sawdust. J Org Chem, 80 (24) (2015), pp. 11953-11962. DOI: 10.1021/acs.joc.5b01776
[12]
M. Garedew, F. Lin, B. Song, T.M. DeWinter, J.E. Jackson, C.M. Saffron, et al. Greener routes to biomass waste valorization: lignin transformation through electrocatalysis for renewable chemicals and fuels production. ChemSusChem, 13 (17) (2020), pp. 4214-4237. DOI: 10.1002/cssc.202000987
[13]
X. Du, H. Zhang, K.P. Sullivan, P. Gogoi, Y. Deng. Electrochemical lignin conversion. ChemSusChem, 13 (17) (2020), pp. 4318-4343. DOI: 10.1002/cssc.202001187
[14]
O. Movil-Cabrera, A. Rodriguez-Silva, C. Arroyo-Torres, J.A. Staser. Electrochemical conversion of lignin to useful chemicals. Biomass Bioenergy, 88 (2016), pp. 89-96.
[15]
W. Shen, X. Chen, J. Qiu, J.A. Hayward, S. Sayeef, P. Osman, et al. A comprehensive review of variable renewable energy levelized cost of electricity. Renew Sustain Energy Rev, 133 (2020), Article 110301.
[16]
B. Zakeri, S. Syri. Electrical energy storage systems: a comparative life cycle cost analysis. Renew Sustain Energy Rev, 42 (2015), pp. 569-596.
[17]
M.M. Rahman, A.O. Oni, E. Gemechu, A. Kumar. Assessment of energy storage technologies: a review. Energy Convers Manage, 223 (2020), Article 113295.
[18]
Y.P. Wijaya, K.J. Smith, C.S. Kim, E.L. Gyenge. Electrocatalytic hydrogenation and depolymerization pathways for lignin valorization: toward mild synthesis of chemicals and fuels from biomass. Green Chem, 22 (21) (2020), pp. 7233-7264. DOI: 10.1039/d0gc02782k
[19]
H.A. Maeda. Lignin biosynthesis: tyrosine shortcut in grasses. Nat Plants, 2 (6) (2016), p. 16080.
[20]
W. Schutyser, T. Renders, S. Van den Bosch, S.F. Koelewijn, G.T. Beckham, B.F. Sels. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev, 47 (3) (2018), pp. 852-908. DOI: 10.1039/c7cs00566k
[21]
C. Li, X. Zhao, A. Wang, G.W. Huber, T. Zhang. Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev, 115 (21) (2015), pp. 11559-11624. DOI: 10.1021/acs.chemrev.5b00155
[22]
J.D. DeMartini, S. Pattathil, J.S. Miller, H. Li, M.G. Hahn, C.E. Wyman. Investigating plant cell wall components that affect biomass recalcitrance in poplar and switchgrass. Energy Environ Sci, 6 (3) (2013), pp. 898-909. DOI: 10.1039/c3ee23801f
[23]
J. Barros, J.C. Serrani-Yarce, F. Chen, D. Baxter, B.J. Venables, R.A. Dixon. Role of bifunctional ammonia-lyase in grass cell wall biosynthesis. Nat Plants, 2 (6) (2016), p. 16050.
[24]
P. Azadi, O.R. Inderwildi, R. Farnood, D.A. King. Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew Sustain Energy Rev, 21 (2013), pp. 506-523.
[25]
Y. Shao, Q. Xia, L. Dong, X. Liu, X. Han, S.F. Parker, et al. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst. Nat Commun, 8 (1) (2017), p. 16104.
[26]
Y. Jing, L. Dong, Y. Guo, X. Liu, Y. Wang. Chemicals from lignin: a review of catalytic conversion involving hydrogen. ChemSusChem, 13 (17) (2020), pp. 4181-4198. DOI: 10.1002/cssc.201903174
[27]
A. Zhang, F. Lu, R. Sun, J. Ralph. Ferulate-coniferyl alcohol cross-coupled products formed by radical coupling reactions. Planta, 229 (5) (2009), pp. 1099-1108. DOI: 10.1007/s00425-009-0894-6
[28]
X. Liu, F.P. Bouxin, J. Fan, V.L. Budarin, C. Hu, J.H. Clark. Recent advances in the catalytic depolymerization of lignin towards phenolic chemicals: a review. ChemSusChem, 13 (17) (2020), pp. 4296-4317. DOI: 10.1002/cssc.202001213
[29]
C. Yang, S. Maldonado, C.R.J. Stephenson. Electrocatalytic lignin oxidation. ACS Catal, 11 (16) (2021), pp. 10104-10114. DOI: 10.1021/acscatal.1c01767
[30]
Z.P. Wu, X.F. Lu, S.Q. Zang, X.W. Lou. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv Funct Mater, 30 (15) (2020), p. 1910274.
[31]
Y. Li, Z. Dang, P. Gao. High-efficiency electrolysis of biomass and its derivatives: advances in anodic oxidation reaction mechanism and transition metal-based electrocatalysts. Nano Select, 2 (5) (2021), pp. 847-864. DOI: 10.1002/nano.202000227
[32]
D. Shao, J. Liang, X. Cui, H. Xu, W. Yan. Electrochemical oxidation of lignin by two typical electrodes: Ti/Sb-SnO2 and Ti/PbO2. Chem Eng J, 244 (2014), pp. 288-295.
[33]
L. Zhang, S. Jiang, W. Ma, Z. Zhou. Oxygen reduction reaction on Pt-based electrocatalysts: four-electron vs two-electron pathway. Chin J Catal, 43 (6) (2022), pp. 1433-1443.
[34]
C. Yang, H. Chen, T. Peng, B. Liang, Y. Zhang, W. Zhao. Lignin valorization toward value-added chemicals and fuels via electrocatalysis: a perspective. Chin J Catal, 42 (11) (2021), pp. 1831-1842.
[35]
X. Du, W. Liu, Z. Zhang, A. Mulyadi, A. Brittain, J. Gong, et al. Low-energy catalytic electrolysis for simultaneous hydrogen evolution and lignin depolymerization. ChemSusChem, 10 (5) (2017), pp. 847-854. DOI: 10.1002/cssc.201601685
[36]
L. Mao, L. Zhang, N. Gao, A. Li. FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue. Bioresour Technol, 123 (2012), pp. 324-331.
[37]
A.R. Gaspar, J.A.F. Gamelas, D.V. Evtuguin, C.P. Neto. Alternatives for lignocellulosic pulp delignification using polyoxometalates and oxygen: a review. Green Chem, 9 (7) (2007), pp. 717-730. DOI: 10.1039/b607824a
[38]
M. Rafiee, M. Alherech, S.D. Karlen, S.S. Stahl. Electrochemical aminoxyl-mediated oxidation of primary alcohols in lignin to carboxylic acids: polymer modification and depolymerization. J Am Chem Soc, 141 (38) (2019), pp. 15266-15276. DOI: 10.1021/jacs.9b07243
[39]
I. Bosque, G. Magallanes, M. Rigoulet, M.D. Kärkäs, C.R.J. Stephenson. Redox catalysis facilitates lignin depolymerization. ACS Cent Sci, 3 (6) (2017), pp. 621-628. DOI: 10.1021/acscentsci.7b00140
[40]
V.L. Pardini, C.Z. Smith, J.H.P. Utley, R.R. Vargas,H. Viertler. Electroorganic reactions. 38. Mechanism of electrooxidative cleavage of lignin model dimers. J Org Chem, 56 (26) (1991), pp. 7305-7313. DOI: 10.1021/jo00026a022
[41]
W.J. Gao, C.M. Lam, B.G. Sun, R.D. Little, C.C. Zeng.Selective electrochemical CO bond cleavage of β-O-4 lignin model compounds mediated by iodide ion. Tetrahedron, 73 (17) (2017), pp. 2447-2454.
[42]
W. Liu, Y. Cui, X. Du, Z. Zhang, Z. Chao, Y. Deng. High efficiency hydrogen evolution from native biomass electrolysis. Energy Environ Sci, 9 (2) (2016), pp. 467-472.
[43]
J.R. Fish, S.G. Swarts, M.D. Sevilla, T. Malinski. Electrochemistry and spectroelectrochemistry of nitrosyl free-radicals. J Phys Chem, 92 (13) (1988), pp. 3745-3751. DOI: 10.1021/j100324a012
[44]
R. Amorati, M. Lucarini, V. Mugnaini, G.F. Pedulli, F. Minisci, F. Recupero, et al. Hydroxylamines as oxidation catalysts: thermochemical and kinetic studies. J Org Chem, 68 (5) (2003), pp. 1747-1754.
[45]
J.E. Nutting, M. Rafiee, S.S. Stahl. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem Rev, 118 (9) (2018), pp. 4834-4885. DOI: 10.1021/acs.chemrev.7b00763
[46]
S. Kishioka, A. Yamada. Kinetic study of the catalytic oxidation of benzyl alcohols by phthalimide-N-oxyl radical electrogenerated in acetonitrile using rotating disk electrode voltammetry. J Electroanal Chem, 578 (1) (2005), pp. 71-77.
[47]
T. Shiraishi, T. Takano, H. Kamitakahara, F. Nakatsubo. Studies on electrooxidation of lignin and lignin model compounds. Part 1: direct electrooxidation of non-phenolic lignin model compounds. Holz, 66 (3) (2012), pp. 303-309.
[48]
F. D’Acunzo, P. Baiocco, M. Fabbrini, C. Galli, P. Gentili. The radical rate-determining step in the oxidation of benzyl alcohols by two N-OH-type mediators of laccase: the polar N-oxyl radical intermediate. New J Chem, 26 (12) (2002), pp. 1791-1794.
[49]
L.M.C. Leynaud Kieffer Curran, L.T.M. Pham, K.L. Sale, B.A. Simmons. Review of advances in the development of laccases for the valorization of lignin to enable the production of lignocellulosic biofuels and bioproducts. Biotechnol Adv, 54 (2022), p. 107809.
[50]
M.M. Cajnko, J. Oblak, M. Grilc, B. Likozar. Enzymatic bioconversion process of lignin: mechanisms, reactions and kinetics. Bioresour Technol, 340 (2021), Article 125655.
[51]
P.S. Chauhan. Role of various bacterial enzymes in complete depolymerization of lignin: a review. Biocatal Agric Biotechnol, 23 (2020), Article 101498
[52]
Y. Liu, G. Luo, H.H. Ngo, W. Guo, S. Zhang. Advances in thermostable laccase and its current application in lignin-first biorefinery: a review. Bioresour Technol, 298 (2020), Article 122511.
[53]
Y. Song, S.H. Chia, U. Sanyal, O.Y. Gutiérrez, J.A. Lercher. Integrated catalytic and electrocatalytic conversion of substituted phenols and diaryl ethers. J Catal, 344 (2016), pp. 263-272.
[54]
S.A. Akhade, N. Singh, O.Y. Gutiérrez, J. Lopez-Ruiz, H. Wang, J.D. Holladay, et al. Electrocatalytic hydrogenation of biomass-derived organics: a review. Chem Rev, 120 (20) (2020), pp. 11370-11419. DOI: 10.1021/acs.chemrev.0c00158
[55]
D. Shen, X. Yu, L. Yuan, S. Zhang, G. Li. Selective production of 1,3-diethylbenzene by electrocatalytic hydrocracking of bamboo lignin in alkaline solution. Chem Sel, 4 (35) (2019), pp. 10430-10435. DOI: 10.1002/slct.201902429
[56]
P. Cai, H. Fan, S. Cao, J. Qi, S. Zhang, G. Li. Electrochemical conversion of corn stover lignin to biomass-based chemicals between Cu/NiMoCo cathode and Pb/PbO2 anode in alkali solution. Electrochim Acta, 264 (2018), pp. 128-139.
[57]
S.H. Shi, Y. Liang, N. Jiao. Electrochemical oxidation induced selective C-C bond cleavage. Chem Rev, 121 (1) (2021), pp. 485-505. DOI: 10.1021/acs.chemrev.0c00335
[58]
W.J. Gao, C.M. Lam, B.G. Sun, R.D. Little, C.C. Zeng.Selective electrochemical C-O bond cleavage of β-O-4 lignin model compounds mediated by iodide ion. Tetrahedron, 73 (17) (2017), pp. 2447-2454.
[59]
N. Abidi, S.N. Steinmann. How are transition states modeled in heterogeneous electrocatalysis?. Curr Opin Electrochem, 33 (2022), Article 100940.
[60]
H.N. Nong, L.J. Falling, A. Bergmann, M. Klingenhof, H.P. Tran, C. Spöri, et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature, 587 (7834) (2020), pp. 408-413. DOI: 10.1038/s41586-020-2908-2
[61]
S.W. Boettcher, Y. Surendranath. Heterogeneous electrocatalysis goes chemical. Nat Catal, 4 (1) (2021), pp. 4-5. DOI: 10.1038/s41929-020-00570-1
[62]
Y. Cao, S.S. Chen, S. Zhang, Y.S. Ok, B.M. Matsagar, K.C.W. Wu, et al. Advances in lignin valorization towards bio-based chemicals and fuels: lignin biorefinery. Bioresour Technol, 291 (2019), Article 121878.
[63]
K. Yan, Y. Zhang, M. Tu, Y. Sun. Electrocatalytic valorization of organosolv lignin utilizing a nickel-based electrocatalyst. Energy Fuels, 34 (10) (2020), pp. 12703-12709. DOI: 10.1021/acs.energyfuels.0c02284
[64]
P. Parpot, A.P. Bettencourt, A.M. Carvalho, E.M. Belgsir. Biomass conversion: attempted electrooxidation of lignin for vanillin production. J Appl Electrochem, 30 (6) (2000), pp. 727-731.
[65]
O. Movil, M. Garlock, J.A. Staser. Non-precious metal nanoparticle electrocatalysts for electrochemical modification of lignin for low-energy and cost-effective production of hydrogen. Int J Hydrogen Energy, 40 (13) (2015), pp. 4519-4530.
[66]
Y. Wang, F. Yang, Z. Liu, L. Yuan, G. Li. Electrocatalytic degradation of aspen lignin over Pb/PbO2 electrode in alkali solution. Catal Commun, 67 (2015), pp. 49-53
[67]
R. Tolba, M. Tian, J. Wen, Z.H. Jiang, A. Chen. Electrochemical oxidation of lignin at IrO2-based oxide electrodes. J Electroanal Chem, 649 (1-2) (2010), pp. 9-15.
[68]
X. Chang, J. van der Zalm, S.S. Thind, A. Chen. Electrochemical oxidation of lignin at electrochemically reduced TiO2 nanotubes. J Electroanal Chem, 863 (2020), Article 114049.
[69]
H. Zhou, Z. Li, S.M. Xu, L. Lu, M. Xu, K. Ji, et al. Selectively upgrading lignin derivatives to carboxylates through electrochemical oxidative C(OH)-C bond cleavage by a Mn-doped cobalt oxyhydroxide catalyst. Angew Chem Int Ed Engl, 60 (16) (2021), pp. 8976-8982. DOI: 10.1002/anie.202015431
[70]
T. Cui, L. Ma, S. Wang, C. Ye, X. Liang, Z. Zhang, et al. Atomically dispersed Pt-N3C1 sites enabling efficient and selective electrocatalytic C-C bond cleavage in lignin models under ambient conditions. J Am Chem Soc, 143 (25) (2021), pp. 9429-9439. DOI: 10.1021/jacs.1c02328
[71]
H. Zhu, L. Wang, Y. Chen, G. Li, H. Li, Y. Tang, et al. Electrochemical depolymerization of lignin into renewable aromatic compounds in a non-diaphragm electrolytic cell. RSC Adv, 4 (56) (2014), pp. 29917-29924.
[72]
L. Wang, S. Liu, H. Jiang, Y. Chen, L. Wang, G. Duan, et al. Electrochemical generation of ROS in ionic liquid for the degradation of lignin model compound. J Electrochem Soc, 165 (11) (2018), pp. H705-H710. DOI: 10.1149/2.0801811jes
[73]
L. Ma, H. Zhou, X. Kong, Z. Li, H. Duan. An electrocatalytic strategy for C-C bond cleavage in lignin model compounds and lignin under ambient conditions. ACS Sustain Chem Eng, 9 (4) (2021), pp. 1932-1940. DOI: 10.1021/acssuschemeng.0c08612
[74]
Y. Sannami, H. Kamitakahara, T. Takano. TEMPO-mediated electro-oxidation reactions of non-phenolic β-O-4-type lignin model compounds. Holz, 71 (2) (2017), pp. 109-117. DOI: 10.1515/hf-2016-0117
[75]
T. Shiraishi, T. Takano, H. Kamitakahara, F. Nakatsubo. Studies on electro-oxidation of lignin and lignin model compounds. Part 2: N-hydroxyphthalimide (NHPI)-mediated indirect electro-oxidation of non-phenolic lignin model compounds. Holz, 66 (3) (2012), pp. 311-315.
[76]
P. Baldrian. Fungal laccases-occurrence and properties. FEMS Microbiol Rev, 30 (2) (2006), pp. 215-242. DOI: 10.1111/j.1574-4976.2005.00010.x
[77]
M. Fabbrini, C. Galli, P. Gentili. Radical or electron-transfer mechanism of oxidation with some laccase/mediator systems. J Mol Catal B Enzym, 18 (1-3) (2002), pp. 169-171.
[78]
O.V. Morozova, G.P. Shumakovich, S.V. Shleev, Y.I. Yaropolov. Laccase-mediator systems and their applications: a review. Prikl Biokhim Mikrobiol, 43 (5) (2007), pp. 523-535.
[79]
C. Galli, P. Gentili. Chemical messengers: mediated oxidations with the enzyme laccase. J Phys Org Chem, 17 (11) (2004), pp. 973-977.
[80]
T. Shiraishi, Y. Sannami, H. Kamitakahara, T. Takano. Comparison of a series of laccase mediators in the electro-oxidation reactions of non-phenolic lignin model compounds. Electrochim Acta, 106 (2013), pp. 440-446.
[81]
K. Lee, S.H. Moon. Electroenzymatic oxidation of veratryl alcohol by lignin peroxidase. J Biotechnol, 102 (3) (2003), pp. 261-268.
[82]
M. Ko, L.T.M. Pham, Y.J. Sa, J. Woo, T.V.T. Nguyen, J.H. Kim, et al. Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nat Commun, 10 (1) (2019), p. 5123.
[83]
T.K.F. Dier, D. Rauber, D. Durneata, R. Hempelmann, D.A. Volmer. Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. Sci Rep, 7 (1) (2017), p. 5041.
[84]
H. Jiang, L. Wang, L. Qiao, A. Xue, Y. Cheng, Y. Chen, et al. Improved oxidative cleavage of lignin model compound by ORR in protic ionic liquid. Int J Electrochem Sci, 14 (3) (2019), pp. 2645-2654. DOI: 10.20964/2019.03.10
[85]
D. Di Marino, V. Aniko, A. Stocco, S. Kriescher, M. Wessling. Emulsion electro-oxidation of Kraft lignin. Green Chem, 19 (20) (2017), pp. 4778-4784.
[86]
J. Xu, Y. Kong, B. Du, X. Wang, J. Zhou. Exploration of mechanisms of lignin extraction by different methods. Environ Prog Sustain Energy, 41 (3) (2021), p. e13785
[87]
S. Rawat, A. Kumar, T. Bhaskar. Ionic liquids for separation of lignin and transformation into value-added chemicals. Curr Opin Green Sust, 34 (2022), Article 100582.
[88]
S. Stiefel, J. Lölsberg, L. Kipshagen, R. Möller-Gulland, M. Wessling. Controlled depolymerization of lignin in an electrochemical membrane reactor. Electrochem Commun, 61 (2015), pp. 49-52.
[89]
B. Bawareth, D. Di Marino, T.A. Nijhuis, T. Jestel, M. Wessling. Electrochemical membrane reactor modeling for lignin depolymerization. ACS Sustain Chem Eng, 7 (2) (2019), pp. 2091-2099. DOI: 10.1021/acssuschemeng.8b04670
[90]
T.A. Kurniawan, G.Y.S. Chan, W.H. Lo, S. Babel. Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J, 118 (1-2) (2006), pp. 83-98.
[91]
R. Thangamani, L. Vidhya, S. Varjani. Chapter 28—electrochemical technologies for wastewater treatment and resource reclamation. A. Kumar, V.K. Singh, P. Singh, V.K. Mishra (Eds.), Microbe mediated remediation of environmental contaminants, Woodhead Publishing, Cambridge (2021), pp. 381-389
[92]
M. Zirbes, L.L. Quadri, M. Breiner, A. Stenglein, A. Bomm, W. Schade, et al. High-temperature electrolysis of Kraft lignin for selective vanillin formation. ACS Sustain Chem Eng, 8 (19) (2020), pp. 7300-7307. DOI: 10.1021/acssuschemeng.0c00162
[93]
R. Zhang, Z. Sun, C. Zong, Z. Lin, H. Huang, K. Yang, et al. Increase of Co 3d projected electronic density of states in AgCoO2 enabled an efficient electrocatalyst toward oxygen evolution reaction. Nano Energy, 57 (2019), pp. 753-760.
[94]
L. Zhang, Q. Xu, R. Zhao, Y. Hu, H. Jiang, C. Li. Fe-doped and sulfur-enriched Ni3S2 nanowires with enhanced reaction kinetics for boosting water oxidation. Green Chem Eng, 3 (4) (2022), pp. 367-373.
[95]
H. Oh, Y. Choi, C. Shin, T.V.T. Nguyen, Y. Han, H. Kim, et al. Phosphomolybdic acid as a catalyst for oxidative valorization of biomass and its application as an alternative electron source. ACS Catal, 10 (3) (2020), pp. 2060-2068. DOI: 10.1021/acscatal.9b04099
[96]
T.E. Lister, L.A. Diaz, M.A. Lilga, A.B. Padmaperuma, Y. Lin, V.M. Palakkal, et al. Low-temperature electrochemical upgrading of bio-oils using polymer electrolyte membranes. Energy Fuels, 32 (5) (2018), pp. 5944-5950. DOI: 10.1021/acs.energyfuels.8b00134
[97]
B. Zhang, J. Zhang, Z. Zhong. Low-energy mild electrocatalytic hydrogenation of bio-oil using ruthenium anchored in ordered mesoporous carbon. ACS Appl Energy Mater, 1 (12) (2018), pp. 6758-6763. DOI: 10.1021/acsaem.8b01718
[98]
T. He, Z. Zhong, B. Zhang. Bio-oil upgrading via ether extraction, looped-oxide catalytic deoxygenation, and mild electrocatalytic hydrogenation techniques. Energy Fuels, 34 (8) (2020), pp. 9725-9733. DOI: 10.1021/acs.energyfuels.0c01719
[99]
M. Garedew, C.H. Lam, L. Petitjean, S. Huang, B. Song, F. Lin, et al. Electrochemical upgrading of depolymerized lignin: a review of model compound studies. Green Chem, 23 (8) (2021), pp. 2868-2899. DOI: 10.1039/d0gc04127k
[100]
Z. Li, M. Garedew, C.H. Lam, J.E. Jackson, D.J. Miller, C.M. Saffron. Mild electrocatalytic hydrogenation and hydrodeoxygenation of bio-oil derived phenolic compounds using ruthenium supported on activated carbon cloth. Green Chem, 14 (9) (2012), pp. 2540-3259. DOI: 10.1039/c2gc35552c
[101]
Y.P. Wijaya, K.J. Smith, C.S. Kim, E.L. Gyenge. Synergistic effects between electrocatalyst and electrolyte in the electrocatalytic reduction of lignin model compounds in a stirred slurry reactor. J Appl Electrochem, 51 (1) (2021), pp. 51-63. DOI: 10.1007/s10800-020-01429-w
[102]
M. Garedew, D. Young-Farhat, J.E. Jackson, C.M. Saffron. Electrocatalytic upgrading of phenolic compounds observed after lignin pyrolysis. ACS Sustain Chem Eng, 7 (9) (2019), pp. 8375-8386. DOI: 10.1021/acssuschemeng.9b00019
[103]
T. Peng, T. Zhuang, Y. Yan, J. Qian, G.R. Dick, J. Behaghel de Bueren, et al. Ternary alloys enable efficient production of methoxylated chemicals via selective electrocatalytic hydrogenation of lignin monomers. J Am Chem Soc, 143 (41) (2021), pp. 17226-17235. DOI: 10.1021/jacs.1c08348
[104]
B. Mahdavi, A. Lafrance, A. Martel, J. Lessard, H. Me’Nard, L. Brossard. Electrocatalytic hydrogenolysis of lignin model dimers at Raney nickel electrodes. J Appl Electrochem, 27 (5) (1997), pp. 605-611.
[105]
A. Cyr, F. Chiltz, P. Jeanson, A. Martel, L. Brossard, J. Lessard, et al. Electrocatalytic hydrogenation of lignin models at Raney nickel and palladium-based electrodes. Can J Chem, 78 (3) (2000), pp. 307-315.
[106]
Z. Fang, M.G. Flynn, J.E. Jackson, E.L. Hegg. Thio-assisted reductive electrolytic cleavage of lignin β-O-4 models and authentic lignin. Green Chem, 23 (1) (2021), pp. 412-421. DOI: 10.1039/d0gc03597a
[107]
N. Yao, P. Li, Z. Zhou, Y. Zhao, G. Cheng, S. Chen, et al. Synergistically tuning water and hydrogen binding abilities over Co4N by Cr doping for exceptional alkaline hydrogen evolution electrocatalysis. Adv Energy Mater, 9 (41) (2019), p. 1902449.
[108]
J. Ryu, D.T. Bregante, W.C. Howland, R.P. Bisbey, C.J. Kaminsky, Y. Surendranath. Thermochemical aerobic oxidation catalysis in water can be analysed as two coupled electrochemical half-reactions. Nat Catal, 4 (9) (2021), pp. 742-752. DOI: 10.1038/s41929-021-00666-2
[109]
F.Y. Chen, Z.Y. Wu, Z. Adler, H.T. Wang. Stability challenges of electrocatalytic oxygen evolution reaction: from mechanistic understanding to reactor design. Joule, 5 (7) (2021), pp. 1704-1731.
[110]
H. Chen, X. Liang, Y. Liu, X. Ai, T. Asefa, X. Zou. Active site engineering in porous electrocatalysts. Adv Mater, 32 (44) (2020), p. 2002435.
[111]
J. Zhu, S. Mu. Defect engineering in carbon-based electrocatalysts: insight into intrinsic carbon defects. Adv Funct Mater, 30 (25) (2020), p. 2001097.
[112]
D. Xue, H. Xia, W. Yan, J. Zhang, S. Mu. Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett, 13 (1) (2021), p. 5.
[113]
C. Tang, Q. Zhang. Nanocarbon for oxygen reduction electrocatalysis: dopants, edges, and defects. Adv Mater, 29 (13) (2017), p. 1604103.
[114]
S.S. Wong, R. Shu, J. Zhang, H. Liu, N. Yan. Downstream processing of lignin derived feedstock into end products. Chem Soc Rev, 49 (15) (2020), pp. 5510-5560. DOI: 10.1039/d0cs00134a
[115]
N. Khwanjaisakun, S. Amornraksa, L. Simasatitkul, P. Charoensuppanimit, S. Assabumrungrat. Techno-economic analysis of vanillin production from Kraft lignin: feasibility study of lignin valorization. Bioresour Technol, 299 (2020), Article 122559.
PDF(5349 KB)

Accesses

Citation

Detail

段落导航
相关文章

/