面向物联网的激励感知区块链辅助的智能边缘缓存与计算迁移研究

王倩, 陈思光, 吴蒙

工程(英文) ›› 2023, Vol. 31 ›› Issue (12) : 127-138.

PDF(1975 KB)
PDF(1975 KB)
工程(英文) ›› 2023, Vol. 31 ›› Issue (12) : 127-138. DOI: 10.1016/j.eng.2022.10.014
研究论文
Article

面向物联网的激励感知区块链辅助的智能边缘缓存与计算迁移研究

作者信息 +

Incentive-Aware Blockchain-Assisted Intelligent Edge Caching and Computation Offloading for IoT

Author information +
History +

摘要

人工智能的快速发展将物联网推向了一个新阶段,面对数据的爆炸性增长和用户对更高服务质量的迫切需求,边缘计算和缓存被视为富有前景的技术解决手段。然而,边缘节点(Edge Nodes, ENs)中的资源并不是取之不尽的。本文提出了一种面向物联网的激励感知区块链辅助的智能边缘缓存与计算迁移方案,该方案致力于为协作ENs在资源优化和控制方面提供安全和智能的解决方案。具体地,该方案通过联合优化迁移和缓存决策以及计算和通信资源分配,以最大限度地降低EN中完成任务的总成本。此外,为解决上述优化问题,本文设计了区块链激励和贡献联合感知的联邦深度强化学习算法。在本地训练期间,该算法构建了一个激励感知区块链辅助的协作机制,即在安全保障前提下增强ENs参与协作的意愿。同时,提出了一种基于贡献的联邦聚合方法,即基于EN对全局模型性能提升所做贡献来计算其梯度的聚合权重,以提升训练效果。最后,与其它基准方案相比,数值结果证明本文方案具备高效的资源优化效用,同时在降低总成本和缓存性能方面具有显著优势。

Abstract

The rapid development of artificial intelligence has pushed the Internet of Things (IoT) into a new stage. Facing with the explosive growth of data and the higher quality of service required by users, edge computing and caching are regarded as promising solutions. However, the resources in edge nodes (ENs) are not inexhaustible. In this paper, we propose an incentive-aware blockchain-assisted intelligent edge caching and computation offloading scheme for IoT, which is dedicated to providing a secure and intelligent solution for collaborative ENs in resource optimization and controls. Specifically, we jointly optimize offloading and caching decisions as well as computing and communication resources allocation to minimize the total cost for tasks completion in the EN. Furthermore, a blockchain incentive and contribution co-aware federated deep reinforcement learning algorithm is designed to solve this optimization problem. In this algorithm, we construct an incentive-aware blockchain-assisted collaboration mechanism which operates during local training, with the aim to strengthen the willingness of ENs to participate in collaboration with security guarantee. Meanwhile, a contribution-based federated aggregation method is developed, in which the aggregation weights of EN gradients are based on their contributions, thereby improving the training effect. Finally, compared with other baseline schemes, the numerical results prove that our scheme has an efficient optimization utility of resources with significant advantages in total cost reduction and caching performance.

关键词

计算迁移 / 缓存 / 激励 / 区块链 / 联邦深度强化学习

Keywords

Computation offloading / Caching / Incentive / Blockchain / Federated deep reinforcement learning

引用本文

导出引用
王倩, 陈思光, 吴蒙. 面向物联网的激励感知区块链辅助的智能边缘缓存与计算迁移研究. Engineering. 2023, 31(12): 127-138 https://doi.org/10.1016/j.eng.2022.10.014

参考文献

[1]
Evans D. The Internet of Things:how the next evolution of the Internet is changing everything. Report. San Jose: CISCO; 2011.
[2]
S. Chen, X. Zhu, H. Zhang, C. Zhao, G. Yang, K. Wang. Efficient privacy preserving data collection and computation offloading for fog-assisted IoT. IEEE Trans Sustain Comput, 5(4) ( 2020), pp. 526-540
CrossRef ADS Google scholar
[3]
Wu F, Liu X, Li H, Fan Q, Zhu L, Wang X, et al. Energy-time efficient task offloading for mobile edge computing in hot-spot scenarios. In:Proceedings of the IEEE International Conference on Communications; 2021 Jun 14-23; Montreal, QC, Canada; 2021.
[4]
J. Zhang, X. Hu, Z. Ning, E.C.H. Ngai, L. Zhou, J. Wei, et al.. Joint resource allocation for latency-sensitive services over mobile edge computing networks with caching. IEEE Internet Things J, 6(3) ( 2019), pp. 4283-4294
CrossRef ADS Google scholar
[5]
Zhang L, Wu J, Mumtaz S, Li J, Gacanin H,Rodrigues JJPC. Edge-to-edge cooperative artificial intelligence in smart cities with on-demand learning offloading. In:Proceedings of the IEEE Global Communications Conference (GLOBECOM); 2019 Dec 9-13; Waikoloa, HI, USA; 2019.
[6]
L. Zhao, K. Yang, Z. Tan, H. Song, A. Al-Dubai, A.Y. Zomaya, et al.. Vehicular computation offloading for industrial mobile edge computing. IEEE Trans Ind Inform, 17(11) ( 2021), pp. 7871-7881
CrossRef ADS Google scholar
[7]
F. Zeng, Q. Chen, L. Meng, J. Wu.Volunteer assisted collaborative offloading and resource allocation in vehicular edge computing. IEEE Trans Intell Transp Syst, 22(6) ( 2021), pp. 3247-3357
CrossRef ADS Google scholar
[8]
Z. Zhao, C. Feng, H.H. Yang, X. Luo.Federated-learning-enabled intelligent fog radio access networks: fundamental theory, key techniques, and future trends. IEEE Wirel Commun, 27(2) ( 2020), pp. 22-28
CrossRef ADS Google scholar
[9]
X. Huang, S. Leng, S. Maharjan, Z. Yan.Multi-agent deep reinforcement learning for computation offloading and interference coordination in small cell networks. IEEE Trans Veh Technol, 70(9) ( 2021), pp. 9282-9293
CrossRef ADS Google scholar
[10]
S. Chen, Y. Zheng, W. Lu, V. Varadarajan, K. Wang.Energy-optimal dynamic computation offloading for industrial IoT in fog computing. IEEE Trans Green Commun Netw, 4(2) ( 2020), pp. 566-576
CrossRef ADS Google scholar
[11]
R. Malik, M. Vu.On-request wireless charging and partial computation offloading in multi-access edge computing systems. IEEE Trans Wirel Commun, 20(10) ( 2021), pp. 6665-6679
CrossRef ADS Google scholar
[12]
Liu Y, He Q, Zheng D, Zhang M, Chen F, Zhang B.Data caching optimization in the edge computing environment. In:Proceedings of the IEEE International Conference on Web Services (ICWS); 2019 Jul 8-13; Milan, Italy; 2019. p. 99-106.
[13]
Chen Z, Zhou Z. Dynamic task caching and computation offloading for mobile edge computing. In: Proceedings of the IEEE Global Communications Conference; 2020 Dec 7-11; Taipei, China; 2020.
[14]
S. Bi, L. Huang, Y.J.A. Zhang.Joint optimization of service caching placement and computation offloading in mobile edge computing systems. IEEE Trans Wirel Commun, 19(7) ( 2020), pp. 4947-4963
CrossRef ADS Google scholar
[15]
G. Zhang, S. Zhang, W. Zhang, Z. Shen, L. Wang.Joint service caching, computation offloading and resource allocation in mobile edge computing systems. IEEE Trans Wirel Commun, 20(8) ( 2021), pp. 5288-5300
CrossRef ADS Google scholar
[16]
Ma X, Zhou A, Zhang S, Wang S.Cooperative service caching and workload scheduling in mobile edge computing. In:Proceedings of the IEEE Conference on Computer Communications; 2020 Jul 6-9; Toronto, ON, Canada; 2020. p. 2076-85.
[17]
S. Zhong, S. Guo, H. Yu, Q. Wang. Cooperative service caching and computation offloading in multi-access edge computing. Comput Netw, 189 ( 2021), Article 107916
[18]
H. Feng, S. Guo, L. Yang, Y. Yang.Collaborative data caching and computation offloading for multi-service mobile edge computing. IEEE Trans Veh Technol, 70(9) ( 2021), pp. 9408-9422
CrossRef ADS Google scholar
[19]
P. Yuan, S. Shao, L. Geng, X. Zhao. Caching hit ratio maximization in mobile edge computing with node cooperation. Comput Netw, 200 ( 2021), Article 108507
[20]
Y. Liu, C. Xu, Y. Zhan, Z. Liu, J. Guan, H. Zhang. Incentive mechanism for computation offloading using edge computing: a stackelberg game approach. Comput Netw, 129 ( 2017), pp. 399-409
[21]
W. Hou, H. Wen, N. Zhang, J. Wu, W. Lei, R. Zhao.Incentive-driven task allocation for collaborative edge computing in industrial Internet of Things. IEEE Internet Things J, 9(`) ( 2022), pp. 706-718
CrossRef ADS Google scholar
[22]
Wang Q, Guo S, Wang Y, Yang Y.Incentive mechanism for edge cloud profit maximization in mobile edge computing. In:Proceedings of the IEEE International Conference on Communications (ICC); 2019 May 20-24; Shanghai, China; 2019.
[23]
S. Luo, X. Chen, Z. Zhou, X. Chen, W. Wu.Incentive-aware micro computing cluster formation for cooperative fog computing. IEEE Trans Wirel Commun, 19(4) ( 2020), pp. 2643-2657
CrossRef ADS Google scholar
[24]
T. Zhang, X. Fang, Y. Liu, G.Y. Li, W. Xu.D2D-enabled mobile user edge caching: a multi-winner auction approach. IEEE Trans Veh Technol, 68(12) ( 2019), pp. 12314-12328
CrossRef ADS Google scholar
[25]
Zarandi S, Tabassum H.Federated double deep Q-learning for joint delay and energy minimization in IoT networks. In:Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops); 2021 Jun 14-23; Montreal, QC, Canada; 2021.
[26]
X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, M. Chen.In-edge AI: intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Netw, 33(5) ( 2019), pp. 156-165
CrossRef ADS Google scholar
[27]
J. Ren, H. Wang, T. Hou, S. Zheng, C. Tang.Federated learning-based computation offloading optimization in edge computing-supported Internet of Things. IEEE Access, 7 ( 2019), pp. 69194-69201
CrossRef ADS Google scholar
[28]
L. Cui, X. Su, Z. Ming, Z. Chen, S. Yang, Y. Zhou, et al.. CREAT: blockchain-assisted compression algorithm of federated learning for content caching in edge computing. IEEE Internet Things J, 9(16) ( 2022), pp. 14151-14161
CrossRef ADS Google scholar
[29]
S. Yu, X. Chen, Z. Zhou, X. Gong, D. Wu.When deep reinforcement learning meets federated learning: intelligent multitimescale resource management for multiaccess edge computing in 5G ultradense network. IEEE Internet Things J, 8(4) ( 2021), pp. 2238-2251
CrossRef ADS Google scholar
[30]
S. Chen, L. Yang, C. Zhao, V. Varadarajan, K. Wang. Double-blockchain assisted secure and anonymous data aggregation for fog-enabled smart grid. Engineering, 8 ( 2022), pp. 159-169
[31]
M. Hefeeda, O. Saleh. Traffic modeling and proportional partial caching for peer-to-peer systems. IEEE/ACM Trans Netw, 16 (6) ( 2008), pp. 1447-1460
[32]
McMahan HB, Moore E, Ramage D, Hampson S, Arcas BA.Communication-efficient learning of deep networks from decentralized data. In:Proceedings of the International Conference on Artificial Intelligence and Statistics; 2017 Apr 20-22; Fort Lauderdale, FL, USA; 2017. p. 1273-82.
[33]
X. Wang, C. Wang, X. Li, V.C.M. Leung, T. Taleb.Federated deep reinforcement learning for Internet of Things with decentralized cooperative edge caching. IEEE Internet Things J, 7(10) 2020), pp. 9441-9455
CrossRef ADS Google scholar
[34]
Y.H. Guo, Z.C. Zhao, K. He, S.W. Lai, J.J. Xia, L.S. Fan. Efficient and flexible management for Industrial Internet of Things: a federated learning approach. Comput Netw, 192(4) ( 2021), Article 108122
PDF(1975 KB)

Accesses

Citation

Detail

段落导航
相关文章

/