[1] |
Evans D. The Internet of Things:how the next evolution of the Internet is changing everything. Report. San Jose: CISCO; 2011.
|
[2] |
S. Chen, X. Zhu, H. Zhang, C. Zhao, G. Yang, K. Wang. Efficient privacy preserving data collection and computation offloading for fog-assisted IoT. IEEE Trans Sustain Comput, 5(4) ( 2020), pp. 526-540
CrossRef
ADS
Google scholar
|
[3] |
Wu F, Liu X, Li H, Fan Q, Zhu L, Wang X, et al. Energy-time efficient task offloading for mobile edge computing in hot-spot scenarios. In:Proceedings of the IEEE International Conference on Communications; 2021 Jun 14-23; Montreal, QC, Canada; 2021.
|
[4] |
J. Zhang, X. Hu, Z. Ning, E.C.H. Ngai, L. Zhou, J. Wei, et al.. Joint resource allocation for latency-sensitive services over mobile edge computing networks with caching. IEEE Internet Things J, 6(3) ( 2019), pp. 4283-4294
CrossRef
ADS
Google scholar
|
[5] |
Zhang L, Wu J, Mumtaz S, Li J, Gacanin H,Rodrigues JJPC. Edge-to-edge cooperative artificial intelligence in smart cities with on-demand learning offloading. In:Proceedings of the IEEE Global Communications Conference (GLOBECOM); 2019 Dec 9-13; Waikoloa, HI, USA; 2019.
|
[6] |
L. Zhao, K. Yang, Z. Tan, H. Song, A. Al-Dubai, A.Y. Zomaya, et al.. Vehicular computation offloading for industrial mobile edge computing. IEEE Trans Ind Inform, 17(11) ( 2021), pp. 7871-7881
CrossRef
ADS
Google scholar
|
[7] |
F. Zeng, Q. Chen, L. Meng, J. Wu.Volunteer assisted collaborative offloading and resource allocation in vehicular edge computing. IEEE Trans Intell Transp Syst, 22(6) ( 2021), pp. 3247-3357
CrossRef
ADS
Google scholar
|
[8] |
Z. Zhao, C. Feng, H.H. Yang, X. Luo.Federated-learning-enabled intelligent fog radio access networks: fundamental theory, key techniques, and future trends. IEEE Wirel Commun, 27(2) ( 2020), pp. 22-28
CrossRef
ADS
Google scholar
|
[9] |
X. Huang, S. Leng, S. Maharjan, Z. Yan.Multi-agent deep reinforcement learning for computation offloading and interference coordination in small cell networks. IEEE Trans Veh Technol, 70(9) ( 2021), pp. 9282-9293
CrossRef
ADS
Google scholar
|
[10] |
S. Chen, Y. Zheng, W. Lu, V. Varadarajan, K. Wang.Energy-optimal dynamic computation offloading for industrial IoT in fog computing. IEEE Trans Green Commun Netw, 4(2) ( 2020), pp. 566-576
CrossRef
ADS
Google scholar
|
[11] |
R. Malik, M. Vu.On-request wireless charging and partial computation offloading in multi-access edge computing systems. IEEE Trans Wirel Commun, 20(10) ( 2021), pp. 6665-6679
CrossRef
ADS
Google scholar
|
[12] |
Liu Y, He Q, Zheng D, Zhang M, Chen F, Zhang B.Data caching optimization in the edge computing environment. In:Proceedings of the IEEE International Conference on Web Services (ICWS); 2019 Jul 8-13; Milan, Italy; 2019. p. 99-106.
|
[13] |
Chen Z, Zhou Z. Dynamic task caching and computation offloading for mobile edge computing. In: Proceedings of the IEEE Global Communications Conference; 2020 Dec 7-11; Taipei, China; 2020.
|
[14] |
S. Bi, L. Huang, Y.J.A. Zhang.Joint optimization of service caching placement and computation offloading in mobile edge computing systems. IEEE Trans Wirel Commun, 19(7) ( 2020), pp. 4947-4963
CrossRef
ADS
Google scholar
|
[15] |
G. Zhang, S. Zhang, W. Zhang, Z. Shen, L. Wang.Joint service caching, computation offloading and resource allocation in mobile edge computing systems. IEEE Trans Wirel Commun, 20(8) ( 2021), pp. 5288-5300
CrossRef
ADS
Google scholar
|
[16] |
Ma X, Zhou A, Zhang S, Wang S.Cooperative service caching and workload scheduling in mobile edge computing. In:Proceedings of the IEEE Conference on Computer Communications; 2020 Jul 6-9; Toronto, ON, Canada; 2020. p. 2076-85.
|
[17] |
S. Zhong, S. Guo, H. Yu, Q. Wang. Cooperative service caching and computation offloading in multi-access edge computing. Comput Netw, 189 ( 2021), Article 107916
|
[18] |
H. Feng, S. Guo, L. Yang, Y. Yang.Collaborative data caching and computation offloading for multi-service mobile edge computing. IEEE Trans Veh Technol, 70(9) ( 2021), pp. 9408-9422
CrossRef
ADS
Google scholar
|
[19] |
P. Yuan, S. Shao, L. Geng, X. Zhao. Caching hit ratio maximization in mobile edge computing with node cooperation. Comput Netw, 200 ( 2021), Article 108507
|
[20] |
Y. Liu, C. Xu, Y. Zhan, Z. Liu, J. Guan, H. Zhang. Incentive mechanism for computation offloading using edge computing: a stackelberg game approach. Comput Netw, 129 ( 2017), pp. 399-409
|
[21] |
W. Hou, H. Wen, N. Zhang, J. Wu, W. Lei, R. Zhao.Incentive-driven task allocation for collaborative edge computing in industrial Internet of Things. IEEE Internet Things J, 9(`) ( 2022), pp. 706-718
CrossRef
ADS
Google scholar
|
[22] |
Wang Q, Guo S, Wang Y, Yang Y.Incentive mechanism for edge cloud profit maximization in mobile edge computing. In:Proceedings of the IEEE International Conference on Communications (ICC); 2019 May 20-24; Shanghai, China; 2019.
|
[23] |
S. Luo, X. Chen, Z. Zhou, X. Chen, W. Wu.Incentive-aware micro computing cluster formation for cooperative fog computing. IEEE Trans Wirel Commun, 19(4) ( 2020), pp. 2643-2657
CrossRef
ADS
Google scholar
|
[24] |
T. Zhang, X. Fang, Y. Liu, G.Y. Li, W. Xu.D2D-enabled mobile user edge caching: a multi-winner auction approach. IEEE Trans Veh Technol, 68(12) ( 2019), pp. 12314-12328
CrossRef
ADS
Google scholar
|
[25] |
Zarandi S, Tabassum H.Federated double deep Q-learning for joint delay and energy minimization in IoT networks. In:Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops); 2021 Jun 14-23; Montreal, QC, Canada; 2021.
|
[26] |
X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, M. Chen.In-edge AI: intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Netw, 33(5) ( 2019), pp. 156-165
CrossRef
ADS
Google scholar
|
[27] |
J. Ren, H. Wang, T. Hou, S. Zheng, C. Tang.Federated learning-based computation offloading optimization in edge computing-supported Internet of Things. IEEE Access, 7 ( 2019), pp. 69194-69201
CrossRef
ADS
Google scholar
|
[28] |
L. Cui, X. Su, Z. Ming, Z. Chen, S. Yang, Y. Zhou, et al.. CREAT: blockchain-assisted compression algorithm of federated learning for content caching in edge computing. IEEE Internet Things J, 9(16) ( 2022), pp. 14151-14161
CrossRef
ADS
Google scholar
|
[29] |
S. Yu, X. Chen, Z. Zhou, X. Gong, D. Wu.When deep reinforcement learning meets federated learning: intelligent multitimescale resource management for multiaccess edge computing in 5G ultradense network. IEEE Internet Things J, 8(4) ( 2021), pp. 2238-2251
CrossRef
ADS
Google scholar
|
[30] |
S. Chen, L. Yang, C. Zhao, V. Varadarajan, K. Wang. Double-blockchain assisted secure and anonymous data aggregation for fog-enabled smart grid. Engineering, 8 ( 2022), pp. 159-169
|
[31] |
M. Hefeeda, O. Saleh. Traffic modeling and proportional partial caching for peer-to-peer systems. IEEE/ACM Trans Netw, 16 (6) ( 2008), pp. 1447-1460
|
[32] |
McMahan HB, Moore E, Ramage D, Hampson S, Arcas BA.Communication-efficient learning of deep networks from decentralized data. In:Proceedings of the International Conference on Artificial Intelligence and Statistics; 2017 Apr 20-22; Fort Lauderdale, FL, USA; 2017. p. 1273-82.
|
[33] |
X. Wang, C. Wang, X. Li, V.C.M. Leung, T. Taleb.Federated deep reinforcement learning for Internet of Things with decentralized cooperative edge caching. IEEE Internet Things J, 7(10) 2020), pp. 9441-9455
CrossRef
ADS
Google scholar
|
[34] |
Y.H. Guo, Z.C. Zhao, K. He, S.W. Lai, J.J. Xia, L.S. Fan. Efficient and flexible management for Industrial Internet of Things: a federated learning approach. Comput Netw, 192(4) ( 2021), Article 108122
|