飞行器驾驶机器人——一种面向有人飞行器的新型无人驾驶系统

金子博, 李道春, 向锦武

工程(英文) ›› 2023, Vol. 27 ›› Issue (8) : 242-253.

PDF(4019 KB)
PDF(4019 KB)
工程(英文) ›› 2023, Vol. 27 ›› Issue (8) : 242-253. DOI: 10.1016/j.eng.2022.10.018
研究论文
Article

飞行器驾驶机器人——一种面向有人飞行器的新型无人驾驶系统

作者信息 +

Robot Pilot: A New Autonomous System toward Flying Manned Aerial Vehicles

Author information +
History +

摘要

飞行器驾驶机器人是指建立一套机器人系统来驾驶有人飞行器,从而形成一种新的无人飞行系统,充分发挥有人飞行器平台成熟度高、负载能力强和适航性等优点,显著扩展了无人飞行器的应用范围。本文详细讨论了飞行器驾驶机器人这一概念及其优点,并提出了一种针对有人直升机的直升机驾驶机器人。根据直升机操纵机构的操控特点设计了驾驶机器人伺服机构。对驾驶机器人伺服机构进行了运动学分析,并在此基础上建立了驾驶机器人飞行控制器的直接驱动控制方法,减少了机器人伺服过程的操纵延迟和控制误差。建立了驾驶机器人的配套地面站系统,实现了不同飞行模式下驾驶机器人系统的功能集成。最后,设计研制了一套直升机驾驶机器人样机,并将其安装在有人直升机上进行了飞行测试。测试结果表明,驾驶机器人能够独立驾驶直升机实现前飞、后飞、侧飞和转弯飞行,验证了直升机驾驶机器人的有效性。

Abstract

The robot pilot is a new concept of a robot system that pilots a manned aircraft, thereby forming a new type of unmanned aircraft system (UAS) that makes full use of the platform maturity, load capacity, and airworthiness of existing manned aircraft while greatly expanding the operation and application fields of UASs. In this research, the implementation and advantages of the robot pilot concept are discussed in detail, and a helicopter robot pilot is proposed to fly manned helicopters. The robot manipulators are designed according to the handling characteristics of the helicopter-controlling mechanism. Based on a kinematic analysis of the robot manipulators, a direct-driving method is established for the robot flight controller to reduce the time delay and control error of the robot servo process. A supporting ground station is built to realize different flight modes and the functional integration of the robot pilot. Finally, a prototype of the helicopter robot pilot is processed and installed in a helicopter to carry out flight tests. The test results show that the robot pilot can independently fly the helicopter to realize forward flight, backward flight, side flight, and turning flight, which verifies the effectiveness of the helicopter robot pilot.

关键词

直升机 / 飞行器驾驶机器人 / 飞行控制 / 无人系统

Keywords

Helicopter / Robot pilot / Flight control / Unmanned system

引用本文

导出引用
金子博, 李道春, 向锦武. 飞行器驾驶机器人——一种面向有人飞行器的新型无人驾驶系统. Engineering. 2023, 27(8): 242-253 https://doi.org/10.1016/j.eng.2022.10.018

参考文献

[1]
A. Mcfadyen, L. Mejias. A survey of autonomous vision-based see and avoid for unmanned aircraft systems. Prog Aerosp Sci, 80 (2016), pp. 1-17.
[2]
M. Skowron, W. Chmielowiec, K. Glowacka, M. Krupa, A. Srebro. Sense and avoid for small unmanned aircraft systems: research on methods and best practices. Proc Inst Mech Eng, 233 (16) (2019), pp. 6044-6062. DOI: 10.1177/0954410019867802
[3]
H. Yang, Y. Lee, S.Y. Jeon, D. Lee. Multi-rotor drone tutorial: systems, mechanics, control and state estimation. Intell Serv Robot, 10 (2) (2017), pp. 79-93. DOI: 10.1007/s11370-017-0224-y
[4]
Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, et al. Autonomous aerial navigation using monocular visual-inertial fusion. J Field Rob, 35 (1) (2018), pp. 23-51. DOI: 10.1002/rob.21732
[5]
M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli,D. Scaramuzza. Autonomous, vision-based flight and live dense 3D mapping with a quadrotor micro aerial vehicle. J Field Robot, 33 (4) (2016), pp. 431-450. DOI: 10.1002/rob.21581
[6]
O. Doukhi, D.J. Lee. Deep reinforcement learning for end-to-end local motion planning of autonomous aerial robots in unknown outdoor environments: real-time flight experiments. Sensors, 21 (7) (2021), p. 2534. DOI: 10.3390/s21072534
[7]
Y. Zhou, S. Lai, H. Cheng, A.H.M. Redhwan, P. Wang, J. Zhu, et al. Toward autonomy of micro aerial vehicles in unknown and global positioning system denied environments. IEEE Trans Ind Electron, 68 (8) (2021), pp. 7642-7651. DOI: 10.1109/tie.2020.3008378
[8]
H. Shraim, A. Awada, R. Youness. A survey on quadrotors: configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control. IEEE Aerosp Electron Syst Mag, 33 (7) (2018), pp. 14-33. DOI: 10.1109/maes.2018.160246
[9]
I.V. Kovalev, A.A. Voroshilova, M.V. Karaseva. On the problem of the manned aircraft modification to UAVs. J Phys Conf Ser, 1399 (5) (2019), Article 055100. DOI: 10.1088/1742-6596/1399/5/055100
[10]
Airforce Technology.QF-16 full scale aerial target. Report. New York City: Airforce Technology; 2016 Dec 8.
[11]
Airforce Technology. Dominator MALE UAV. Report. New York City: Airforce Technology; 2011 Mar 7.
[12]
Hardesty M, Guthrie D, Cerchie D.Unmanned little bird testing approach. In:Proceedings of the American Helicopter Society International—International Specialist Meeting on Unmanned Rotorcraft Systems 2009; 2009 Jan 20-22; Phoenix, AZ, USA. Fairfax: VFS; 2009.p.496-507.
[13]
Graham J, Tadghighi H, Caldwell D, Cerchie D.Unmanned little bird analytic tools. In:Proceedings of the American Helicopter Society International—International Specialists Meeting on Unmanned Rotorcraft 2009; 2009 Jan 20-22; Phoenix, AZ, USA. Fairfax: VFS; 2009. p.518-28.
[14]
Graham J, Caldwell D, Dockter G, Cerchie D.Unmanned Little Bird command and control. In:Proceedings of the American Helicopter Society International—International Specialists Meeting on Unmanned Rotorcraft 2009; 2009 Jan 20-22; Phoenix, AZ, USA. Fairfax: VFS; 2009. p.335-8.
[15]
Jeong H, Kim J, Shim DH. Development of an optionally piloted vehicle using a humanoid robot. In: Proceedings of the 52nd AIAA Aerospace Sciences Meeting—AIAA Science and Technology Forum and Exposition; 2014 Jan 13-17; National Harbor, MD, USA. Reston: AIAA; 2014. p. 1165.
[16]
Kreitmair-Steck W, Haisch S, Hess S, Jank, S. Eurocopter research on pilot assistance for rotorcraft. In: Proceedings of Enhanced and Synthetic Vision 2009. SPIE Defense, Security, and Sensing 2009; 2009 Apr 13-17; Orlando, FL, USA. Bellingham: SPIE; 2009. p.78-87.
[17]
S. Greiser, R. Lantzsch, J. Wolfram, J. Wartmann, M. Müllhäuser, T. Lüken, et al. Results of the pilot assistance system “assisted low-level flight and landing on unprepared landing sites” obtained with the ACT/FHS research rotorcraft. Aerosp Sci Technol, 45 (2015), pp. 215-227.
[18]
Gierszewski D, Nagarajan P, Jaisle J, Krammer C, Maly M, Holzapfel F. Demonstration of a procedure-based approach to functional analysis for an optionally piloted vehicle. In: Proceedings of the AIAA Scitech Forum; 2021 Jan 11-15 & 19-21; online. Reston: AIAA; 2021. p. 1635.
[19]
W. Wu, Y. Zhang, J. Liu, S. Zhou, D. Mei. Overall architecture design of new generation intelligent cockpit. Hangkong Xuebao, 37 (1) (2016), pp. 290-299. [Chinese].
[20]
Lounis C, Peysakhovich V, Causse M. Intelligent cockpit:eye tracking integration to enhance the pilot-aircraft interaction. In: Proceedings of the 2018 Symposium on Eye Tracking Research and Applications; 2018 Jun 14-17; Warsaw, Poland. New York City: ACM; 2018. p. 74.
[21]
Liang B, Chen Y, Wu H.A conception of flight test mode for future intelligent cockpit. In:Proceedings of the 2020 Chinese Automation Congress (CAC); 2020 Nov 6- 8; Shanghai, China. IEEE; 2020. p. 3260-4.
[22]
J. Liu, A. Gardi, S. Ramasamy, Y. Lim, R. Sabatini. Cognitive pilot-aircraft interface for single-pilot operations. Knowl Base Syst, 112 (2016), pp. 37-53.
[23]
K.P.L. Vu, J. Lachter, V. Battiste, T.Z. Strybel. Single pilot operations in domestic commercial aviation. Hum Factors, 60 (6) (2018), pp. 755-762. DOI: 10.1177/0018720818791372
[24]
N. Ernest, K. Cohen, E. Kivelevitch, C. Schumacher, D. Casbeer. Genetic fuzzy trees and their application towards autonomous training and control of a squadron of unmanned combat aerial vehicles. Unmanned Syst, 3 (3) (2015), pp. 185-204.
[25]
N. Zheng, Z. Liu, P. Ren, Y. Ma, S. Chen, S. Yu, et al. Hybrid-augmented intelligence: collaboration and cognition. Front Inf Technol Electron Eng, 18 (2) (2017), pp. 153-179.
[26]
Young SH. Aircrew Labor In-Cockpit Automation System (ALIAS). Report. Arlington: DARPA; 2022 Feb 8.
[27]
W. Kucinski. Phase three of DARPA’s ALIAS aircraft automation system continues. SAE International, Report. Warrendale (2018 Oct 30)
[28]
Johnson M, Beane M, Mindell D, Ryan J. Knowledge management for rapidly extensible collaborative robots. In: Proceedings of the HCII 2019: Human Interface and the Management of Information. Visual Information and Knowledge Management; 2019 Jul 26-31; Orlando, FL, USA. Cham: Springer; 2019. p.503-23.
[29]
ALIAS equipped Black Hawk helicopter completes first uninhabited flight. Report. Arlington: DARPA; 2022 Feb 8.
[30]
Song H, Shin H, You H, Hong J, Shim DH. Toward autonomous aircraft piloting by a humanoid robot: hardware and control algorithm design. In:Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016 Oct 9- 14; Daejeon, Republic of Korea. IEEE; 2016. p. 398-403.
[31]
Jeong H, Shim DH, Cho S. A Robot-Machine Interface for full-functionality automation using a humanoid. In: Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2014 Sep 14-18; Chicago, IL, USA. IEEE; 2014. p.4044-9.
[32]
Airforce Technology. US AFRL conducts debut flight of ROBOpilot unmanned air system. Report. New York City: Airforce Technology; 2019 Aug 16.
[33]
Air Force Research Laboratory Public Affairs. ROBOpilot Unmanned Air Platform returns to flight. Report. Wright-Patterson Air Force Base: AFRL; 2020 Sep 28.
[34]
Z. Jin, D. Li, Z. Wang. Research on the operating mechanicals of the helicopter robot pilot. IOP Conf Series Mater Sci Eng, 887 (1) (2020), Article 012022. DOI: 10.1088/1757-899x/887/1/012022
[35]
M. Ruderman, F. Hoffmann, T. Bertram. A Matlab-based framework for the remote control of a 6-DOF robotic arm for education and research in control theory. IFAC Proc, 45 (11) (2012), pp. 366-371.
[36]
M. Gao, D. Chen, Y. Yang, Z. He. A fixed-distance planning algorithm for 6-DOF manipulators. Ind Rob Int J, 42 (6) (2015), pp. 586-599.
[37]
Kucuk S, Bingul Z.The inverse kinematics solutions of industrial robot manipulators. In:Proceedings of the IEEE International Conference on Mechatronics; 2004 Jun 5; Istanbul, Turkey. IEEE; 2004. p. 274-9.
[38]
S. Kucuk, Z. Bingul. Inverse kinematics solutions for industrial robot manipulators with offset wrists. Appl Math Model, 38 (7-8) (2014), pp. 1983-1999.
[39]
Heffley RK, Jewell WF, Lehman JM, Van Winkle RA. A compilation and analysis of helicopter handling qualities data. Report. Moffett Field: NASA Ames Research Center; 1979 Aug. Report No.: NASA CR-3144. Contract No.: NAS2-9344.
PDF(4019 KB)

Accesses

Citation

Detail

段落导航
相关文章

/