[1] |
A. Mcfadyen, L. Mejias. A survey of autonomous vision-based see and avoid for unmanned aircraft systems. Prog Aerosp Sci, 80 (2016), pp. 1-17.
|
[2] |
M. Skowron, W. Chmielowiec, K. Glowacka, M. Krupa, A. Srebro. Sense and avoid for small unmanned aircraft systems: research on methods and best practices. Proc Inst Mech Eng, 233 (16) ( 2019), pp. 6044-6062. DOI: 10.1177/0954410019867802
|
[3] |
H. Yang, Y. Lee, S.Y. Jeon, D. Lee. Multi-rotor drone tutorial: systems, mechanics, control and state estimation. Intell Serv Robot, 10 (2) ( 2017), pp. 79-93. DOI: 10.1007/s11370-017-0224-y
|
[4] |
Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, et al. Autonomous aerial navigation using monocular visual-inertial fusion. J Field Rob, 35 (1) ( 2018), pp. 23-51. DOI: 10.1002/rob.21732
|
[5] |
M. Faessler, F. Fontana, C. Forster, E. Mueggler, M. Pizzoli,D. Scaramuzza. Autonomous, vision-based flight and live dense 3D mapping with a quadrotor micro aerial vehicle. J Field Robot, 33 (4) ( 2016), pp. 431-450. DOI: 10.1002/rob.21581
|
[6] |
O. Doukhi, D.J. Lee. Deep reinforcement learning for end-to-end local motion planning of autonomous aerial robots in unknown outdoor environments: real-time flight experiments. Sensors, 21 (7) ( 2021), p. 2534. DOI: 10.3390/s21072534
|
[7] |
Y. Zhou, S. Lai, H. Cheng, A.H.M. Redhwan, P. Wang, J. Zhu, et al. Toward autonomy of micro aerial vehicles in unknown and global positioning system denied environments. IEEE Trans Ind Electron, 68 (8) ( 2021), pp. 7642-7651. DOI: 10.1109/tie.2020.3008378
|
[8] |
H. Shraim, A. Awada, R. Youness. A survey on quadrotors: configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control. IEEE Aerosp Electron Syst Mag, 33 (7) ( 2018), pp. 14-33. DOI: 10.1109/maes.2018.160246
|
[9] |
I.V. Kovalev, A.A. Voroshilova, M.V. Karaseva. On the problem of the manned aircraft modification to UAVs. J Phys Conf Ser, 1399 (5) ( 2019), Article 055100. DOI: 10.1088/1742-6596/1399/5/055100
|
[10] |
Airforce Technology.QF-16 full scale aerial target. Report. New York City: Airforce Technology; 2016 Dec 8.
|
[11] |
Airforce Technology. Dominator MALE UAV. Report. New York City: Airforce Technology; 2011 Mar 7.
|
[12] |
Hardesty M, Guthrie D, Cerchie D.Unmanned little bird testing approach. In:Proceedings of the American Helicopter Society International—International Specialist Meeting on Unmanned Rotorcraft Systems 2009; 2009 Jan 20-22; Phoenix, AZ, USA. Fairfax: VFS; 2009.p.496-507.
|
[13] |
Graham J, Tadghighi H, Caldwell D, Cerchie D.Unmanned little bird analytic tools. In:Proceedings of the American Helicopter Society International—International Specialists Meeting on Unmanned Rotorcraft 2009; 2009 Jan 20-22; Phoenix, AZ, USA. Fairfax: VFS; 2009. p.518-28.
|
[14] |
Graham J, Caldwell D, Dockter G, Cerchie D.Unmanned Little Bird command and control. In:Proceedings of the American Helicopter Society International—International Specialists Meeting on Unmanned Rotorcraft 2009; 2009 Jan 20-22; Phoenix, AZ, USA. Fairfax: VFS; 2009. p.335-8.
|
[15] |
Jeong H, Kim J, Shim DH. Development of an optionally piloted vehicle using a humanoid robot. In: Proceedings of the 52nd AIAA Aerospace Sciences Meeting—AIAA Science and Technology Forum and Exposition; 2014 Jan 13-17; National Harbor, MD, USA. Reston: AIAA; 2014. p. 1165.
|
[16] |
Kreitmair-Steck W, Haisch S, Hess S, Jank, S. Eurocopter research on pilot assistance for rotorcraft. In: Proceedings of Enhanced and Synthetic Vision 2009. SPIE Defense, Security, and Sensing 2009; 2009 Apr 13-17; Orlando, FL, USA. Bellingham: SPIE; 2009. p.78-87.
|
[17] |
S. Greiser, R. Lantzsch, J. Wolfram, J. Wartmann, M. Müllhäuser, T. Lüken, et al. Results of the pilot assistance system “assisted low-level flight and landing on unprepared landing sites” obtained with the ACT/FHS research rotorcraft. Aerosp Sci Technol, 45 (2015), pp. 215-227.
|
[18] |
Gierszewski D, Nagarajan P, Jaisle J, Krammer C, Maly M, Holzapfel F. Demonstration of a procedure-based approach to functional analysis for an optionally piloted vehicle. In: Proceedings of the AIAA Scitech Forum; 2021 Jan 11-15 & 19-21; online. Reston: AIAA; 2021. p. 1635.
|
[19] |
W. Wu, Y. Zhang, J. Liu, S. Zhou, D. Mei. Overall architecture design of new generation intelligent cockpit. Hangkong Xuebao, 37 (1) (2016), pp. 290-299. [Chinese].
|
[20] |
Lounis C, Peysakhovich V, Causse M. Intelligent cockpit:eye tracking integration to enhance the pilot-aircraft interaction. In: Proceedings of the 2018 Symposium on Eye Tracking Research and Applications; 2018 Jun 14-17; Warsaw, Poland. New York City: ACM; 2018. p. 74.
|
[21] |
Liang B, Chen Y, Wu H.A conception of flight test mode for future intelligent cockpit. In:Proceedings of the 2020 Chinese Automation Congress (CAC); 2020 Nov 6- 8; Shanghai, China. IEEE; 2020. p. 3260-4.
|
[22] |
J. Liu, A. Gardi, S. Ramasamy, Y. Lim, R. Sabatini. Cognitive pilot-aircraft interface for single-pilot operations. Knowl Base Syst, 112 (2016), pp. 37-53.
|
[23] |
K.P.L. Vu, J. Lachter, V. Battiste, T.Z. Strybel. Single pilot operations in domestic commercial aviation. Hum Factors, 60 (6) ( 2018), pp. 755-762. DOI: 10.1177/0018720818791372
|
[24] |
N. Ernest, K. Cohen, E. Kivelevitch, C. Schumacher, D. Casbeer. Genetic fuzzy trees and their application towards autonomous training and control of a squadron of unmanned combat aerial vehicles. Unmanned Syst, 3 (3) (2015), pp. 185-204.
|
[25] |
N. Zheng, Z. Liu, P. Ren, Y. Ma, S. Chen, S. Yu, et al. Hybrid-augmented intelligence: collaboration and cognition. Front Inf Technol Electron Eng, 18 (2) (2017), pp. 153-179.
|
[26] |
Young SH. Aircrew Labor In-Cockpit Automation System (ALIAS). Report. Arlington: DARPA; 2022 Feb 8.
|
[27] |
W. Kucinski. Phase three of DARPA’s ALIAS aircraft automation system continues. SAE International, Report. Warrendale (2018 Oct 30)
|
[28] |
Johnson M, Beane M, Mindell D, Ryan J. Knowledge management for rapidly extensible collaborative robots. In: Proceedings of the HCII 2019: Human Interface and the Management of Information. Visual Information and Knowledge Management; 2019 Jul 26-31; Orlando, FL, USA. Cham: Springer; 2019. p.503-23.
|
[29] |
ALIAS equipped Black Hawk helicopter completes first uninhabited flight. Report. Arlington: DARPA; 2022 Feb 8.
|
[30] |
Song H, Shin H, You H, Hong J, Shim DH. Toward autonomous aircraft piloting by a humanoid robot: hardware and control algorithm design. In:Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2016 Oct 9- 14; Daejeon, Republic of Korea. IEEE; 2016. p. 398-403.
|
[31] |
Jeong H, Shim DH, Cho S. A Robot-Machine Interface for full-functionality automation using a humanoid. In: Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2014 Sep 14-18; Chicago, IL, USA. IEEE; 2014. p.4044-9.
|
[32] |
Airforce Technology. US AFRL conducts debut flight of ROBOpilot unmanned air system. Report. New York City: Airforce Technology; 2019 Aug 16.
|
[33] |
Air Force Research Laboratory Public Affairs. ROBOpilot Unmanned Air Platform returns to flight. Report. Wright-Patterson Air Force Base: AFRL; 2020 Sep 28.
|
[34] |
Z. Jin, D. Li, Z. Wang. Research on the operating mechanicals of the helicopter robot pilot. IOP Conf Series Mater Sci Eng, 887 (1) (2020), Article 012022. DOI: 10.1088/1757-899x/887/1/012022
|
[35] |
M. Ruderman, F. Hoffmann, T. Bertram. A Matlab-based framework for the remote control of a 6-DOF robotic arm for education and research in control theory. IFAC Proc, 45 (11) (2012), pp. 366-371.
|
[36] |
M. Gao, D. Chen, Y. Yang, Z. He. A fixed-distance planning algorithm for 6-DOF manipulators. Ind Rob Int J, 42 (6) (2015), pp. 586-599.
|
[37] |
Kucuk S, Bingul Z.The inverse kinematics solutions of industrial robot manipulators. In:Proceedings of the IEEE International Conference on Mechatronics; 2004 Jun 5; Istanbul, Turkey. IEEE; 2004. p. 274-9.
|
[38] |
S. Kucuk, Z. Bingul. Inverse kinematics solutions for industrial robot manipulators with offset wrists. Appl Math Model, 38 (7-8) (2014), pp. 1983-1999.
|
[39] |
Heffley RK, Jewell WF, Lehman JM, Van Winkle RA. A compilation and analysis of helicopter handling qualities data. Report. Moffett Field: NASA Ames Research Center; 1979 Aug. Report No.: NASA CR-3144. Contract No.: NAS2-9344.
|