用于储能设备的一种新型高导电性和高选择性质子交换膜

Kang Huang, Shuhao Lin, Yu Xia, Yongsheng Xia, Feiyan Mu, Yuqin Lu, Hongyan Cao, Yixing Wang, Weihong Xing, Zhi Xu

工程(英文) ›› 2023, Vol. 28 ›› Issue (9) : 69-78.

PDF(2827 KB)
PDF(2827 KB)
工程(英文) ›› 2023, Vol. 28 ›› Issue (9) : 69-78. DOI: 10.1016/j.eng.2022.11.008
研究论文
Article

用于储能设备的一种新型高导电性和高选择性质子交换膜

作者信息 +

Highly Conductive Proton Selectivity Membrane Enabled by Hollow Carbon Sieving Nanospheres for Energy Storage Devices

Author information +
History +

Abstract

Ion conductive membranes (ICMs) with highly conductive proton selectivity are of significant importance and greatly desired for energy storage devices. However, it is extremely challenging to construct fast proton-selective transport channels in ICMs. Herein, a membrane with highly conductive proton selectivity was fabricated by incorporating porous carbon sieving nanospheres with a hollow structure (HCSNs) in a polymer matrix. Due to the precise ion sieving ability of the microporous carbon shells and the fast proton transport through their accessible internal cavities, this advanced membrane presented a proton conductivity (0.084 S·cm−1) superior to those of a commercial Nafion 212 (N212) membrane (0.033 S·cm−1) and a pure polymer membrane (0.049 S·cm−1). The corresponding proton selectivity of the membrane (6.68 × 105 S·min·cm−3) was found to be enhanced by about 5.9-fold and 4.3-fold, respectively, compared with those of the N212 membrane (1.13 × 105 S·min·cm−3) and the pure membrane (1.56 × 105 S·min·cm−3). Low-field nuclear magnetic resonance (LF-NMR) clearly revealed the fast proton-selective transport channels enabled by the HCSNs in the polymeric membrane. The proposed membrane exhibited an outstanding energy efficiency (EE) of 84% and long-term stability over 1400 cycles with a 0.065% capacity decay per cycle at 120 mA·cm−2 in a typical vanadium flow battery (VFB) system.

Keywords

Ion conductive membrane / Hollow carbon sieving nanosphere / Proton transport channel / Flow battery

引用本文

导出引用
Kang Huang, Shuhao Lin, Yu Xia. 用于储能设备的一种新型高导电性和高选择性质子交换膜. Engineering. 2023, 28(9): 69-78 https://doi.org/10.1016/j.eng.2022.11.008

参考文献

[1]
T.M. Gür. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci, 11 (10) (2018), pp. 2696-2767. DOI: 10.1039/c8ee01419a
[2]
Q. Zeng, Y. Lai, L. Jiang, F. Liu, X. Hao, L. Wang, et al. Integrated photorechargeable energy storage system: next-generation power source driving the future. Adv Energy Mater, 10 (14) (2020), Article 1903930
[3]
K.M. Tan, T.S. Babu, V.K. Ramachandaramurthy, P. Kasinathan, S.G. Solanki, S.K. Raveendran. Empowering smart grid: a comprehensive review of energy storage technology and application with renewable energy integration. J Energy Storage, 39 (2021), Article 102591
[4]
J. Liu, Q. Wang, Z. Song, F. Fang. Bottlenecks and countermeasures of high-penetration renewable energy development in China. Engineering, 7 (11) (2021), pp. 1611-1622
[5]
S. Zhang, W. Chen. China’s energy transition pathway in a carbon neutral vision. Engineering, 14 (2022), pp. 64-76. DOI: 10.1117/12.2636629
[6]
X.Q. Zhang, C.Z. Zhao, J.Q. Huang, Q. Zhang. Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering, 4 (6) (2018), pp. 831-847
[7]
S. Du. Recent advances in electrode design based on one-dimensional nanostructure arrays for proton exchange membrane fuel cell applications. Engineering, 7 (1) (2021), pp. 33-49
[8]
Y. Xia, Y. Wang, H. Cao, S. Lin, Y. Xia, X. Hou, et al. Rigidly and intrinsically microporous polymer reinforced sulfonated polyether ether ketone membrane for vanadium flow battery. J Membr Sci, 653 (2022), Article 120517
[9]
P. Zuo, Y. Li, A. Wang, R. Tan, Y. Liu, X. Liang, et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage. Angew Chem Int Ed Engl, 59 (24) (2020), pp. 9564-9573. DOI: 10.1002/anie.202000012
[10]
H. Cao, Y. Xia, Y. Lu, Y. Wu, Y. Xia, X. Hou, et al. MOF-801 polycrystalline membrane with sub-10 nm polymeric assembly layer for ion sieving and flow battery storage. AIChE J, 68 (6) (2022), p. e17657
[11]
T. Xu, B. Wu, L. Hou, Y. Zhu, F. Sheng, Z. Zhao, et al. Highly ion-permselective porous organic cage membranes with hierarchical channels. J Am Chem Soc, 144 (23) (2022), pp. 10220-10229. DOI: 10.1021/jacs.2c00318
[12]
W Wang, Y Zhang, X Yang, H Sun, Y Wu, L Shao. Monovalent cation exchange membranes with Janus charged structure for ion separation. Engineering. Forthcoming (2023)
[13]
D. Zhang, L. Xin, Y. Xia, L. Dai, K. Qu, K. Huang, et al. Advanced Nafion hybrid membranes with fast proton transport channels toward high-performance vanadium redox flow battery. J Membr Sci, 624 (2021), Article 119047
[14]
J. Ye, X. Zhao, Y. Ma, J. Su, C. Xiang, K. Zhao, et al. Hybrid membranes dispersed with superhydrophilic TiO2 nanotubes toward ultra-stable and high-performance vanadium redox flow batteries. Adv Energy Mater, 10 (22) (2020), p. 1904041
[15]
Q. Dai, F. Xing, X. Liu, D. Shi, C. Deng, Z. Zhao, et al. High-performance PBI membranes for flow batteries: from the transport mechanism to the pilot plant. Energy Environ Sci, 15 (4) (2022), pp. 1594-1600. DOI: 10.1039/d2ee00267a
[16]
Z. Yuan, L. Liang, Q. Dai, T. Li, Q. Song, H. Zhang, et al. Low-cost hydrocarbon membrane enables commercial-scale flow batteries for long-duration energy storage. Joule, 6 (4) (2022), pp. 884-905
[17]
X. Lou, B. Lu, M. He, Y. Yu, X. Zhu, F. Peng, et al. Functionalized carbon black modified sulfonated polyether ether ketone membrane for highly stable vanadium redox flow battery. J Membr Sci, 643 (2022), Article 120015
[18]
Y. Zhang, H. Wang, P. Qian, Y. Zhou, J. Shi, H. Shi. Sulfonated poly(ether ether ketone)/amine-functionalized graphene oxide hybrid membrane with various chain lengths for vanadium redox flow battery: a comparative study. J Membr Sci, 610 (2020), Article 118232
[19]
L. Zeng, J. Ye, J. Zhang, J. Liu, C. Jia. A promising SPEEK/MCM composite membrane for highly efficient vanadium redox flow battery. Surf Coat Tech, 358 (2019), pp. 167-172
[20]
L. Dai, F. Xu, K. Huang, Y. Xia, Y. Wang, K. Qu, et al. Ultrafast water transport in two-dimensional channels enabled by spherical polyelectrolyte brushes with controllable flexibility. Angew Chem Int Ed Engl, 60 (36) (2021), pp. 19933-19941. DOI: 10.1002/anie.202107085
[21]
L. Xin, D. Zhang, K. Qu, Y. Lu, Y. Wang, K. Huang, et al. Zr-MOF-enabled controllable ion sieving and proton conductivity in flow battery membrane. Adv Funct Mater, 31 (42) (2021), p. 2104629
[22]
J. Kim, J. Han, H. Kim, K. Kim, H. Lee, E. Kim, et al. Thermally cross-linked sulfonated poly(ether ether ketone) membranes containing a basic polymer-grafted graphene oxide for vanadium redox flow battery application. J Energy Storage, 45 (2022), Article 103784
[23]
Y. Ji, Z.Y. Tay, S.F.Y. Li. Highly selective sulfonated poly(ether ether ketone)/titanium oxide composite membranes for vanadium redox flow batteries. J Membr Sci, 539 (2017), pp. 197-205
[24]
D.H. Hyeon, J.H. Chun, C.H. Lee, H.C. Jung, S.H. Kim. Composite membranes based on sulfonated poly(ether ether ketone) and SiO2 for a vanadium redox flow battery. Korean J Chem Eng, 32 (8) (2015), pp. 1554-1563. DOI: 10.1007/s11814-014-0358-y
[25]
M.A. Aziz, S. Shanmugam. Ultra-high proton/vanadium selectivity of a modified sulfonated poly(arylene ether ketone) composite membrane for all vanadium redox flow batteries. J Mater Chem A, 5 (32) (2017), pp. 16663-16671
[26]
D.W. Lim, H. Kitagawa. Proton transport in metal-organic frameworks. Chem Rev, 120 (16) (2020), pp. 8416-8467. DOI: 10.1021/acs.chemrev.9b00842
[27]
P. Pachfule, A. Acharjya, J. Roeser, T. Langenhahn, M. Schwarze, R. Schomäcker, et al. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J Am Chem Soc, 140 (4) (2018), pp. 1423-1427. DOI: 10.1021/jacs.7b11255
[28]
Z.C. Guo, Z.Q. Shi, X.Y. Wang, Z.F. Li, G. Li. Proton conductive covalent organic frameworks. Coord Chem Rev, 422 (2020), Article 213465
[29]
Z. Zhang, X. Cui, X. Jiang, Q. Ding, J. Cui, Y. Zhang, et al. Efficient splitting of trans-/cis-olefins using an anion-pillared ultramicroporous metal-organic framework with guest-adaptive pore channels. Engineering, 11 (2022), pp. 80-86. DOI: 10.1145/3584376.3584392
[30]
X. Wang, X. Ding, H. Zhao, J. Fu, Q. Xin, Y. Zhang. Pebax-based mixed matrix membranes containing hollow polypyrrole nanospheres with mesoporous shells for enhanced gas permeation performance. J Membr Sci, 602 (2020), Article 117968
[31]
W. Liu, N. Luo, P. Li, X. Yang, Z. Dai, S. Song, et al. New sulfonated poly (ether ether ketone) composite membrane with the spherical bell-typed superabsorbent microspheres: excellent proton conductivity and water retention properties at low humidity. J Power Sources, 452 (2020), Article 227823
[32]
J. Wang, Y. Liu, Q. Cai, A. Dong, D. Yang, D. Zhao. Hierarchically porous silica membrane as separator for high-performance lithium-ion batteries. Adv Mater, 34 (3) (2022), p. 2107957
[33]
J.H. Lee, K. Im, S. Han, S.J. Yoo, J. Kim, J.H. Kim. Bimodal-porous hollow MgO sphere embedded mixed matrix membranes for CO2 capture. Separ Purif Tech, 250 (2020), Article 117065
[34]
W.Y. Liu, X.J. Ju, X.Q. Pu, Q.W. Cai, Y.Q. Liu, Z. Liu, et al. Functional capsules encapsulating molecular-recognizable nanogels for facile removal of organic micro-pollutants from water. Engineering, 7 (5) (2021), pp. 636-646. Corrigendum in: Engineering 2021;7(9):1342
[35]
J. Zhang, J.A. Schott, Y. Li, W. Zhan, S.M. Mahurin, K. Nelson, et al. Membrane-based gas separation accelerated by hollow nanosphere architectures. Adv Mater, 29 (4) (2017), p. 1603797
[36]
Z. Salahshoor, A. Shahbazi, N. Koutahzadeh. Developing a novel nitrogen-doped hollow porous carbon sphere (N-HPCS) blended nanofiltration membrane with superior water permeance characteristic for high saline and colored wastewaters treatment. Chem Eng J, 431 (Pt 2) (2022), Article 134068
[37]
S.S. Park, A.J. Rieth, C.H. Hendon, M. Dincă. Selective vapor pressure dependent proton transport in a metal-organic framework with two distinct hydrophilic pores. J Am Chem Soc, 140 (6) (2018), pp. 2016-2019. DOI: 10.1021/jacs.7b12784
[38]
M.K. Petersen, G.A. Voth. Characterization of the solvation and transport of the hydrated proton in the perfluorosulfonic acid membrane Nafion. J Phys Chem B, 110 (37) (2006), pp. 18594-18600. DOI: 10.1021/jp062719k
[39]
Q. Dai, Z. Liu, L. Huang, C. Wang, Y. Zhao, Q. Fu, et al. Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery. Nat Commun, 11 (1) (2020), p. 13. Corrected in: Nat Commun 2020;11(1):2609
[40]
J. Ye, Y. Cheng, L. Sun, M. Ding, C. Wu, D. Yuan, et al. A green SPEEK/lignin composite membrane with high ion selectivity for vanadium redox flow battery. J Membr Sci, 572 (2019), pp. 110-118
[41]
A. Li, G. Wang, X. Wei, F. Li, M. Zhang, J. Zhang, et al. Highly selective sulfonated poly(ether ether ketone)/polyvinylpyrrolidone hybrid membranes for vanadium redox flow batteries. J Mater Sci, 55 (35) (2020), pp. 16822-16835. DOI: 10.1007/s10853-020-05228-8
[42]
Z. Yuan, X. Li, J. Hu, W. Xu, J. Cao, H. Zhang. Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium. Phys Chem Chem Phys, 16 (37) (2014), pp. 19841-19847
[43]
Y. Zhao, H. Zhang, C. Xiao, L. Qiao, Q. Fu, X. Li. Highly selective charged porous membranes with improved ion conductivity. Nano Energy, 48 (2018), pp. 353-360
[44]
J. Ye, C. Zheng, J. Liu, T. Sun, S. Yu, H. Li. In situ grown tungsten trioxide nanoparticles on graphene oxide nanosheet to regulate ion selectivity of membrane for high performance vanadium redox flow battery. Adv Funct Mater, 32 (8) (2022), p. 2109427
[45]
H. Vinh-Thang, S. Kaliaguine. Predictive models for mixed-matrix membrane performance: a review. Chem Rev, 113 (7) (2013), pp. 4980-5028. DOI: 10.1021/cr3003888
[46]
W.H. Zhang, M.J. Yin, Q. Zhao, C.G. Jin, N. Wang, S. Ji, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat Nanotechnol, 16 (3) (2021), pp. 337-343. DOI: 10.1038/s41565-020-00833-9
[47]
X. Li, Y. Wang, J. Chang, H. Sun, H. He, C. Qian, et al. “Mix-then-on-demand-complex”: in situ cascade anionization and complexation of graphene oxide for high-performance nanofiltration membranes. ACS Nano, 15 (3) (2021), pp. 4440-4449. DOI: 10.1021/acsnano.0c08308
[48]
Y.L. Ji, B.X. Gu, S.J. Xie, M.J. Yin, W.J. Qian, Q. Zhao, et al. Superfast water transport zwitterionic polymeric nanofluidic membrane reinforced by metal-organic frameworks. Adv Mater, 33 (38) (2021), p. 2102292
PDF(2827 KB)

Accesses

Citation

Detail

段落导航
相关文章

/