[1] |
P. Wang, Y. Chen, J.L. Hu, H.L. Zhang, Q. Ying. Source apportionment of summertime ozone in China using a source-oriented chemical transport model. Atmos Environ, 211 (2019), pp. 79-90
|
[2] |
K. Li, D.J. Jacob, L. Shen, X. Lu, I. De Smedt, H. Liao. Increases in surface ozone pollution in China from 2013 to 2019: anthropogenic and meteorological influences. Atmos Chem Phys, 20 (19) ( 2020), pp. 11423-11433. DOI: 10.5194/acp-20-11423-2020
|
[3] |
P. Wang, J.Y. Shen, M. Xia, S. Sun, Y. Zhang, H. Zhang, et al. Unexpected enhancement of ozone exposure and health risks during National Day in China. Atmos Chem Phys, 21 (13) ( 2021), pp. 10347-10356. DOI: 10.5194/acp-21-10347-2021
|
[4] |
Y. Wang, O. Wild, X. Chen, Q. Wu, M. Gao, H.S. Chen, et al. Health impacts of long-term ozone exposure in China over 2013-2017. Environ Int, 144 (2020), p. 106030
|
[5] |
T. Le, Y. Wang, L. Liu, J. Yang, Y.L. Yung, G. Li, et al. Unexpected air pollution with marked emission reductions during COVID-19 in China. Science, 369 (6504) ( 2020), pp. 702-706. DOI: 10.1126/science.abb7431
|
[6] |
C.S. Malley, D.K. Henze, J.C.I. Kuylenstierna, H.W. Vallack, Y. Davila, S.C. Anenberg, et al. Updated global estimates of respiratory mortality in adults ≥ 30 years of age attributable to long-term ozone exposure. Environ Health Perspect, 125 (8) (2017), Article 087021
|
[7] |
D. Shindell, G. Faluvegi, K. Seltzer, C. Shindell. Quantified, localized health benefits of accelerated carbon dioxide emissions reductions. Nat Clim Chang, 8 (4) ( 2018), pp. 291-295. DOI: 10.1038/s41558-018-0108-y
|
[8] |
K.M. Seltzer, D.T. Shindell, C.S. Malley. Measurement-based assessment of health burdens from long-term ozone exposure in the United States, Europe, and China. Environ Res Lett, 13 (10) ( 2018), Article 104018. DOI: 10.1088/1748-9326/aae29d
|
[9] |
S.C. Anenberg, L.W. Horowitz, D.Q. Tong, J.J. West. An estimate of the global burden of anthropogenic ozone and fine particulate matter on premature human mortality using atmospheric modeling. Environ Health Perspect, 118 (9) ( 2010), pp. 1189-1195. DOI: 10.1289/ehp.0901220
|
[10] |
S. Sillman. The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations. J Geophys Res Atmos, 100 (D7) (1995), pp. 14175-14188
|
[11] |
S. Zhu, J. Poetzscher, J. Shen, S. Wang, P. Wang, H. Zhang. Comprehensive insights into O3 changes during the COVID-19 from O3 formation regime and atmospheric oxidation capacity. Geophys Res Lett, 48 (10) (2021), Article GL093668
|
[12] |
H.Y. Zhao, X. Li, Q. Zhang, X. Jiang, J. Lin, G.P. Peters, et al. Effects of atmospheric transport and trade on air pollution mortality in China. Atmos Chem Phys, 17 (17) ( 2017), pp. 10367-10381. DOI: 10.5194/acp-17-10367-2017
|
[13] |
H.Y. Zhao, Q. Zhang, D.B. Guan, S.J. Davis, Z. Liu, H. Huo, et al. Assessment of China’s virtual air pollution transport embodied in trade by using a consumption-based emission inventory. Atmos Chem Phys, 15 (10) ( 2015), pp. 5443-5456. DOI: 10.5194/acp-15-5443-2015
|
[14] |
Y. Wang, H. Yang, J. Liu, Y. Xu, X. Wang, J.M. Ma, et al. Analysis of multiple drivers of air pollution emissions in China via interregional trade. J Clean Prod, 244 (2020), Article 118507
|
[15] |
J.T. Lin, D. Pan, S.J. Davis, Q. Zhang, K.B. He, C. Wang, et al. China’s international trade and air pollution in the United States. Environ Sci, 111 (5) ( 2014), pp. 1736-1741. DOI: 10.1073/pnas.1312860111
|
[16] |
S.J. Davis, G.P. Peters, K. Caldeira. The supply chain of CO 2 emissions. Proc Natl Acad Sci USA, 108 (45) ( 2011), pp. 18554-18559. DOI: 10.1073/pnas.1107409108
|
[17] |
B. Lin, M. Xu. Does China become the “pollution heaven” in South-South trade? Evidence from Sino-Russian trade. Sci Total Environ, 666 (2019), pp. 964-974
|
[18] |
S. Martinez, M. Marchamalo, S. Alvarez. Organization environmental footprint applying a multi-regional input-output analysis: a case study of a wood parquet company in Spain. Sci Total Environ, 618 ( 2018), pp. 7-14. DOI: 10.53689/int.v1i4.18
|
[19] |
P. Wang, Y. Chen, J. Hu, H. Zhang, Q. Ying. Attribution of tropospheric ozone to NO x and VOC emissions: considering ozone formation in the transition regime. Environ Sci Technol, 53 (3) ( 2019), pp. 1404-1412. DOI: 10.1021/acs.est.8b05981
|
[20] |
P. Wang, T. Wang, Q. Ying. Regional source apportionment of summertime ozone and its precursors in the megacities of Beijing and Shanghai using a source-oriented chemical transport model. Atmos Environ, 224 (2020), p. 117337
|
[21] |
X. Yang, K. Wu, Y. Lu, S. Wang, Y. Qiao, X. Zhang, et al. Origin of regional springtime ozone episodes in the Sichuan Basin, China: role of synoptic forcing and regional transport. Environ Pollut, 278 (2021), Article 116845
|
[22] |
X. Lei, H. Cheng, J. Peng, H. Jiang, X. Lyu, P. Zeng, et al. Impact of long-range atmospheric transport on volatile organic compounds and ozone photochemistry at a regional background site in central China. Atmos Environ, 246 (2021), Article 118093
|
[23] |
C. Gong, H. Liao, L. Zhang, X. Yue, R. Dang, Y. Yang, et al. Persistent ozone pollution episodes in north China exacerbated by regional transport. Environ Pollut, 265 (2020), Article 115056
|
[24] |
L.K. Xue, T. Wang, J. Gao, A.J. Ding, X.H. Zhou, D.R. Blake, et al. Ground-level ozone in four Chinese cities: precursors, regional transport and heterogeneous processes. Atmos Chem Phys, 14 (23) ( 2014), pp. 13175-13188. DOI: 10.5194/acp-14-13175-2014
|
[25] |
G.E. Halkos, K.D. Tsilika. A new vision of classical multi-regional input-output models. Comput Econ, 51 (3) ( 2018), pp. 571-594. DOI: 10.1007/s10614-016-9624-x
|
[26] |
M. Crippa, E. Solazzo, G. Huang, D. Guizzardi, E. Koffi, M. Muntean, et al.High resolution temporal profiles in the emissions database for global atmospheric research. Sci Data, 7 (1) (2020), p. 121
|
[27] |
A.B. Guenther, X. Jiang, C.L. Heald, T. Sakulyanontvittaya, T. Duhl, L.K. Emmons, et al. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geosci Model Dev, 5 (6) ( 2012), pp. 1471-1492. DOI: 10.5194/gmd-5-1471-2012
|
[28] |
C. Wiedinmyer, S.K. Akagi, R.J. Yokelson, L.K. Emmons, J.A. Al-Saadi, J.J. Orlando, et al. The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning. Geosci Model Dev, 4 (3) ( 2011), pp. 625-641. DOI: 10.5194/gmd-4-625-2011
|
[29] |
J.L. Hu, J.J. Chen, Q. Ying, H. Zhang. One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmos Chem Phys, 16 (16) ( 2016), pp. 10333-10350. DOI: 10.5194/acp-16-10333-2016
|
[30] |
Y. Wang, S. Zhu, J. Ma, et al. Enhanced atmospheric oxidation capacity and associated ozone increases during COVID-19 lockdown in the Yangtze River Delta. Sci Total Environ, 768 (2021), Article 144796
|
[31] |
P. Wang, J. Shen, S. Zhu, M. Gao, J. Ma, J. Liu, et al. The aggravated short-term PM2.5-related health risk due to atmospheric transport in the Yangtze River Delta. Environ Pollut, 275 (2021), Article 116672
|
[32] |
H. Luo, X. Tang, H. Wu, L. Kong, Q. Wu, K. Cao, et al. The Impact of the numbers of monitoring stations on the national and regional air quality assessment in China during 2013-18. Adv Atmos Sci, 39 (10) ( 2022), pp. 1709-1720. DOI: 10.1007/s00376-022-1346-5
|
[33] |
M. Ezzati, A.D. Lopez, A. Rodgers, C.J.L. Murray. Comparative quantification of health risks: global and regional burden of disease attributable to selected major risk factors. World Health Organization, Geneva (2004)
|
[34] |
P. Yin, R. Chen, L. Wang, X. Meng, C. Liu, Y. Niu, et al. Ambient ozone pollution and daily mortality: a nationwide study in 272 Chinese cities. Environ Health Perspect, 125 (11) (2017), Article 117006
|
[35] |
S.S. Lim, T. Vos, A.D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the global burden of disease study 2010. Lancet, 380 (9859) (2012), pp. 2224-2260
|
[36] |
H. Liu, S. Liu, B.R. Xue, Z. Lv, Z. Meng, X.F. Yang, et al. Ground-level ozone pollution and its health impacts in China. Atmos Environ, 173 (2018), pp. 223-230
|
[37] |
J.E. Dobson, E.A. Bright, P.R. Coleman, R.C. Durfee, B.A. Worley. LandScan: a global population database for estimating populations at risk. Photogramm Eng Remote Sensing, 66 (7) (2000), pp. 849-857
|
[38] |
M. Gao, S.K. Guttikunda, G.R. Carmichael, Y. Wang, Z. Liu, C.O. Stanier, et al. Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area. Sci Total Environ, 511 (2015), pp. 553-561
|
[39] |
J. Sánchez-balseca, A. Pérez-foguet. Spatially-structured human mortality modelling using air pollutants with a compositional approach. Sci Total Environ, 813 (2022), Article 152486
|
[40] |
S. Wang, J. Wu. Spatial heterogeneity of the associations of economic and health care factors with infant mortality in China using geographically weighted regression and spatial clustering. Soc Sci Med, 263 (2020), p. 113287
|
[41] |
W.B. Shao, F.Y. Li, X. Cao, Z. Tang, Y. Bai, S. Yang. Reducing export-driven CO2 and PM emissions in China’s provinces: a structural decomposition and coordinated effects analysis. J Clean Prod, 274 (2020), Article 123101
|
[42] |
X. Yang, W.Z. Zhang, J. Fan, J.H. Yu, H. Zhao. Transfers of embodied PM2.5 emissions from and to the north China region based on a multiregional input-output model. Environ Pollut, 235 (2018), pp. 381-393
|
[43] |
X. Huang, A. Ding, J. Gao, B. Zheng, D. Zhou, X. Qi, et al. Enhanced secondary pollution offset reduction of primary emissions during COVID-19 lockdown in China. Natl Sci Rev, 8 (2) (2021), Article nwaa137
|
[44] |
K.J. Maji, A. Namdeo.Continuous increases of surface ozone and associated premature mortality growth in China during2015-2019. Environ Pollut, 269 (2021), p. 116183
|
[45] |
L. Liu, L. Hu, Y. Liu, H.K. Wang. Modeling of the health impacts of ambient ozone pollution in China and India. Atmos Environ, 267 (2021), Article 118753
|
[46] |
S.K. Sahu, S. Liu, S. Liu, D. Ding, J. Xing. Ozone pollution in China: background and transboundary contributions to ozone concentration & related health effects across the country. Sci Total Environ, 761 (2021), Article 144131
|
[47] |
M. Kang, J. Hu, H. Zhang, Q. Ying. Evaluation of a highly condensed SAPRC chemical mechanism and two emission inventories for ozone source apportionment and emission control strategy assessments in China. Sci Total Environ, 813 (2022), Article 151922
|