流体电化学靶向诱生硫酸根自由基降解水中微污染物

郑文天, 尤世界, 姚远, 任南琪, 丁彬, 李方, 刘艳彪

工程(英文) ›› 2023, Vol. 30 ›› Issue (11) : 144-152.

PDF(1466 KB)
PDF(1466 KB)
工程(英文) ›› 2023, Vol. 30 ›› Issue (11) : 144-152. DOI: 10.1016/j.eng.2022.12.005
研究论文
Article

流体电化学靶向诱生硫酸根自由基降解水中微污染物

作者信息 +

Sustainable Generation of Sulfate Radicals and Decontamination of Micropollutants via Sequential Electrochemistry

Author information +
History +

Highlight

• A system that runs solely on sulfate by sequential electrochemistry was proposed.

• The circular transformation of SO42-→ S2O82-→ SO4•-→ SO42- can be achieved.

• Ultra-fast degradation of selected contaminants can be achieved within 2 sec.

• The system implemented green chemistry principle to decontaminate diverse micropollutants.

摘要

水中微污染物的深度去除是环境工程领域的重大挑战。受限于低浓度和高毒性等污染特征,传统水处理策略难以实现这类污染物的有效去除。基于此,本文提出了流体电化学靶向诱生硫酸根自由基(SO4•-)的研究设想,通过构筑穿透式电化学反应系统,实现了阳极将硫酸根离子(SO42−)氧化生成过硫酸根(S2O82−),再通过阴极还原反应将S2O82−转化为SO4•-。开展了流体电化学系统构造原理、硫酸根自由基靶向生成机制和微污染物降解机理等相关研究。结果表明,在最优实验条件下,该系统可在单次流模式下实现苯胺的高效降解(100%)和总有机碳的有效去除(65.0%)。该系统在宽pH范围内和复杂水基质条件下均能实现多种微污染物的有效去除。本工作基于“以废治废”理念,结合了膜分离和电化学的技术优势,有望为水中微污染物的深度去除提供一种潜在可行的技术选择。

Abstract

The removal of emerging micropollutants in the aquatic environment remains a global challenge. Conventional routes are often chemically, energetically, and operationally intensive, which decreases their sustainability during applications. Herein, we develop an advanced chemical-free strategy for micropollutants decontamination that is solely based on sequential electrochemistry involving ubiquitous sulfate anions in natural and engineered waters. This can be achieved via a chain reaction initiated by electrocatalytic anodic sulfate (SO42−) oxidation to produce persulfate (S2O82−) and followed by a cathodic persulfate reduction to produce sulfate radicals (SO4̇−). These SO4̇− are powerful reactive species that enable the unselective degradation of micropollutants and yield SO42− again in the treated water. The proposed flow-through electrochemical system achieves the efficient degradation (100.0%) and total organic carbon removal (65.0%) of aniline under optimized conditions with a single-pass mode. We also reveal the effectiveness of the proposed system for the degradation of a wide array of emerging micropollutants over a broad pH range and in complex matrices. This work provides the first proof-of-concept demonstration using ubiquitous sulfate for micropollutants decontamination, making water purification more sustainable and more economical.

关键词

高级氧化 / 链式反应 / 硫酸根离子 / 微污染物 / 顺序电化学体系

Keywords

Advanced oxidation / Chain reaction / Sulfate radical / Micropollutants / Sequential electrochemistry

引用本文

导出引用
郑文天, 尤世界, 姚远. 流体电化学靶向诱生硫酸根自由基降解水中微污染物. Engineering. 2023, 30(11): 144-152 https://doi.org/10.1016/j.eng.2022.12.005

参考文献

[1]
Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, et al.. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ, 473-474 ( 2014), pp. 619-641
[2]
L.F. Li, Y.X. Mao, H.Y. Dong, Y. Wang, L. Xu, S.G. Liu, et al.. The ultrafiltration process enhances antibiotic removal in the full-scale advanced treatment of drinking water. Engineering ( 2022)[In press]
[3]
N. Jiang, R. Shang, S.G.J. Heijman, L.C. Rietveld. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: a review. Water Res, 144 ( 2018), pp. 145-161
[4]
A. Butkovskyi, A.W. Jeremiasse, L. Hernandez Leal, T. van der Zande, H. Rijnaarts, G. Zeeman. Electrochemical conversion of micropollutants in gray water. Environ Sci Technol, 48 (3) ( 2014), pp. 1893-1901 DOI: 10.1021/es404411p
[5]
J. Radjenovic, M. Petrovic. Removal of sulfamethoxazole by electrochemically activated sulfate: implications of chloride addition. J Hazard Mater, 333 ( 2017), pp. 242-249
[6]
Y.M. Liu, Y.J. Zhang, K. Cheng, X. Quan, X.F. Fan, Y. Su, et al.. Selective electrochemical reduction of carbon dioxide to ethanol on a boron- and nitrogen-Co-doped nanodiamond. Angew Chem Int Ed Engl, 56 (49) ( 2017), pp. 15607-15611 DOI: 10.1002/anie.201706311
[7]
M. Sgroi, P. Roccaro, G.L. Oelker, S.A. Snyder. N-nitrosodimethylamine formation upon ozonation and identification of precursors source in a municipal wastewater treatment plant. Environ Sci Technol, 48 (17) ( 2014), pp. 10308-10315 DOI: 10.1021/es5011658
[8]
A. Farhat, J. Keller, S. Tait, J. Radjenovic. Removal of persistent organic contaminants by electrochemically activated sulfate. Environ Sci Technol, 49 (24) ( 2015), pp. 14326-14333 DOI: 10.1021/acs.est.5b02705
[9]
G.S. Liu, S.J. You, Y. Tan, N.Q. Ren. In situ photochemical activation of sulfate for enhanced degradation of organic pollutants in water. Environ Sci Technol, 51 (4) ( 2017), pp. 2339-2346 DOI: 10.1021/acs.est.6b05090
[10]
Y.M. Liu, X.F. Fan, X. Quan, Y.F. Fan, S. Chen, X.Y. Zhao. Enhanced perfluorooctanoic acid degradation by electrochemical activation of sulfate solution on B/N codoped diamond. Environ Sci Technol, 53 (9) ( 2019), pp. 5195-5201 DOI: 10.1021/acs.est.8b06130
[11]
W.M. Chen, Y.F. Luo, G. Ran, Q.B. Li. An investigation of refractory organics in membrane bioreactor effluent following the treatment of landfill leachate by the O3/H2O2 and MW/PS processes. Waste Manag, 97 ( 2019), pp. 1-9
[12]
F. Wang, C.W. Wu, Q.B. Li. Treatment of refractory organics in strongly alkaline dinitrodiazophenol wastewater with microwave irradiation-activated persulfate. Chemosphere, 254 ( 2020), Article 126773
[13]
X.Y. Li, B.R. Jie, H.D. Lin, Z.P. Deng, J.Y. Qian, Y.Q. Yang, et al.. Application of sulfate radicals-based advanced oxidation technology in degradation of trace organic contaminants (TrOCs): recent advances and prospects. J Environ Manage, 308 ( 2022), Article 114664
[14]
D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner. Evaluation of advanced oxidation processes for water and wastewater treatment—a critical review. Water Res, 139 ( 2018), pp. 118-131
[15]
Y.Q. Zhu, S. Chen, X. Quan, Y.B. Zhang. Cobalt implanted TiO2 nanocatalyst for heterogeneous activation of peroxymonosulfate. RSC Adv, 3 ( 2013), pp. 520-525
[16]
P.D. Hu, M.C. Long. Cobalt-catalyzed sulfate radical-based advanced oxidation: a review on heterogeneous catalysts and applications. Appl Catal B, 181 ( 2016), pp. 103-117
[17]
Z.Z. Zheng, D. Eglin, M. Alini, G.R. Richards, L. Qin, Y.X. Lai. Visible light-induced 3D bioprinting technologies and corresponding bioink materials for tissue engineering: a review. Engineering, 7 (7) ( 2021), pp. 966-978
[18]
W. Ren, Q.M. Zhang, C. Cheng, F. Miao, H. Zhang, X.B. Luo, et al.. Electro-induced carbon nanotube discrete electrodes for sustainable persulfate activation. Environ Sci Technol, 56 (19) ( 2022), pp. 14019-14029 DOI: 10.1021/acs.est.2c03677
[19]
F. De, K.C. Araújo, P. de, J.P. Barreto, J.C. Cardozo, E.V. dos Santos, D.M. de Araújo, C.A. Martínez-Huitle. Sulfate pollution: evidence for electrochemical production of persulfate by oxidizing sulfate released by the surfactant sodium dodecyl sulfate. Environ Chem Lett, 16 (2) ( 2018), pp. 647-652
[20]
L.W. Matzek, M.J. Tipton, A.T. Farmer, A.D. Steen, K.E. Carter. Understanding electrochemically activated persulfate and its application to ciprofloxacin abatement. Environ Sci Technol, 52 (10) ( 2018), pp. 5875-5883 DOI: 10.1021/acs.est.8b00015
[21]
J. Davis, J.C. Baygents, J. Farrell. Understanding persulfate production at boron doped diamond film anodes. Electrochim Acta, 150 ( 2014), pp. 68-74
[22]
Z. Chen, S.P. Geng, J. Xiao, F.Y. Zhao, K. Wang, Y. Wang, et al.. Understanding the selectivity trend of water and sulfate (SO42-) oxidation on metal oxides: on-site synthesis of persulfate, H2O2 for wastewater treatment. Chem Eng J, 431 ( 2022), Article 134332
[23]
A.V. Marenich, C.J. Cramer, D.G. Truhlar. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B, 113 (18) ( 2009), pp. 6378-6396 DOI: 10.1021/jp810292n
[24]
Y.F. Gao, J.N. Zhang, X.F. Bai, S.J. You. Monolithic ceramic electrode for electrochemical deactivation of Microcystis aeruginosa. Electrochim Acta, 259 ( 2018), pp. 410-418
[25]
S.Z. Pei, H. Shi, J.N. Zhang, S.L. Wang, N.Q. Ren, S.J. You. Electrochemical removal of tetrabromobisphenol A by fluorine-doped titanium suboxide electrochemically reactive membrane. J Hazard Mater, 419 ( 2021), Article 126434
[26]
J. Teng, G.S. Liu, J. Liang, S.J. You. Electrochemical oxidation of sulfadiazine with titanium suboxide mesh anode. Electrochim Acta, 331 ( 2020), Article 135441
[27]
T. Wu, G.H. Zhao, Y.Z. Lei, P.Q. Li. Distinctive tin dioxide anode fabricated by pulse electrodeposition: high oxygen evolution potential and efficient electrochemical degradation of fluorobenzene. J Phys Chem C, 115 (10) ( 2011), pp. 3888-3898 DOI: 10.1021/jp110149v
[28]
P. Bai, M.Z. Bazant. Charge transfer kinetics at the solid-solid interface in porous electrodes. Nat Commun, 5 (1) ( 2014), p. 3585
[29]
Y. Lei, C.S. Chen, Y.J. Tu, Y.H. Huang, H. Zhang. Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: mechanism, stability, and effects of pH and bicarbonate ions. Environ Sci Technol, 49 (11) ( 2015), pp. 6838-6845 DOI: 10.1021/acs.est.5b00623
[30]
G.S. Liu, H. Zhou, J. Teng, S.J. You. Electrochemical degradation of perfluorooctanoic acid by macro-porous titanium suboxide anode in the presence of sulfate. Chem Eng J, 371 ( 2019), pp. 7-14 DOI: 10.1117/12.2519917
[31]
W.S. Chen, C.P. Huang. Mineralization of aniline in aqueous solution by electrochemical activation of persulfate. Chemosphere, 125 ( 2015), pp. 175-181
[32]
L.W. Matzek, K.E. Carter. Activated persulfate for organic chemical degradation: a review. Chemosphere, 151 ( 2016), pp. 178-188
[33]
X.J. Shi, S. Siahrostami, G.L. Li, Y.R. Zhang, P. Chakthranont, F. Studt, et al.. Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nat Commun, 8 (1) ( 2017), p. 701
[34]
H.L. Su, C. Christodoulatos, B. Smolinski, P. Arienti, G. O’Connor, X.G. Meng. Advanced oxidation process for DNAN using UV/H2O2. Engineering, 5 (5) ( 2019), pp. 849-854
[35]
L.M. Jin, S.J. You, N.Q. Ren, B. Ding, Y.B. Liu. Mo vacancy-mediated activation of peroxymonosulfate for ultrafast micropollutant removal using an electrified MXene filter functionalized with Fe single atoms. Environ Sci Technol, 56 (16) ( 2022), pp. 11750-11759 DOI: 10.1021/acs.est.2c03904
[36]
L.N. Su, P.F. Wang, X.L. Ma, J.H. Wang, S.H. Zhan. Regulating local electron density of iron single sites by introducing nitrogen vacancies for efficient photo-Fenton process. Angew Chem Int Ed Engl, 60 (39) ( 2021), pp. 21261-21266 DOI: 10.1002/anie.202108937
[37]
W.D. Oh, Z.L. Dong, G. Ronn, T.T. Lim. Surface-active bismuth ferrite as superior peroxymonosulfate activator for aqueous sulfamethoxazole removal: performance, mechanism and quantification of sulfate radical. J Hazard Mater, 325 ( 2017), pp. 71-81
[38]
Y.J. Zhang, Q. Zhang, H.J. Peng, W.L. Zhang, M. Li, J.P. Feng, et al.. The changing C/N of aggressive aniline: metagenomic analysis of pollutant removal, metabolic pathways and functional genes. Chemosphere, 309 (Pt 1) ( 2022), Article 136598
[39]
D.L. Guo, S.J. You, F. Li, Y.B. Liu. Engineering carbon nanocatalysts towards efficient degradation of emerging organic contaminants via persulfate activation: a review. Chin Chem Lett, 33 (1) ( 2022), pp. 1-10
[40]
Y.L. Wu, A. Bianco, M. Brigante, W.B. Dong, P. de Sainte-Claire, K. Hanna, et al.. Sulfate radical photogeneration using Fe-EDDS: influence of critical parameters and naturally occurring scavengers. Environ Sci Technol, 49 (24) ( 2015), pp. 14343-14349 DOI: 10.1021/acs.est.5b03316
[41]
F.Q. Liu, Z.Y. Wang, S.J. You, Y.B. Liu. Electrogenerated quinone intermediates mediated peroxymonosulfate activation toward effective water decontamination and electrode antifouling. Appl Catal B, 320 ( 2023), Article 121980
[42]
M.H. Lin, D.M. Bulman, C.K. Remucal, B.P. Chaplin. Chlorinated byproduct formation during the electrochemical advanced oxidation process at Magnéli phase Ti4O7 electrodes. Environ Sci Technol, 54 (19) ( 2020), pp. 12673-12683 DOI: 10.1021/acs.est.0c03916
[43]
A. Florentin, A. Hautemanière, P. Hartemann. Health effects of disinfection by-products in chlorinated swimming pools. Int J Hyg Environ Health, 214 (6) ( 2011), pp. 461-469
[44]
D.L. Guo, Y.B. Liu, H.D. Ji, C.C. Wang, B. Chen, C.S. Shen, et al.. Silicate-enhanced heterogeneous flow-through electro-Fenton system using iron oxides under nanoconfinement. Environ Sci Technol, 55 (6) ( 2021), pp. 4045-4053 DOI: 10.1021/acs.est.1c00349
[45]
S.Z. Pei, S.J. You, J.N. Zhang. Application of pulsed electrochemistry to enhanced water decontamination. ACS EST Eng, 1 (11) ( 2021), pp. 1502-1508 DOI: 10.1021/acsestengg.1c00141
[46]
S.Z. Pei, Y. Wang, S.J. You, Z. Li, N.Q. Ren. Electrochemical removal of chlorophenol pollutants by reactive electrode membranes: scale-up strategy for engineered applications. Engineering, 9 ( 2022), pp. 77-84
[47]
Y.B. Liu, G.D. Gao, C.D. Vecitis. Prospects of an electroactive carbon nanotube membrane toward environmental applications. Acc Chem Res, 53 (12) ( 2020), pp. 2892-2902 DOI: 10.1021/acs.accounts.0c00544
[48]
W.T. Zheng, Y.B. Liu, W. Liu, H.D. Ji, F. Li, C.S. Shen, et al.. A novel electrocatalytic filtration system with carbon nanotube supported nanoscale zerovalent copper toward ultrafast oxidation of organic pollutants. Water Res, 194 ( 2021), Article 116961
[49]
F.R. Oliveira, K.C. Surendra, D.P. Jaisi, H. Lu, G. Unal-Tosun, S. Sung, et al.. Alleviating sulfide toxicity using biochar during anaerobic treatment of sulfate-laden wastewater. Bioresour Technol, 301 ( 2020), Article 122711
[50]
Y.B. Liu, F.Q. Liu, N. Ding, X.M. Hu, C.S. Shen, F. Li, et al.. Recent advances on electroactive CNT-based membranes for environmental applications: the perfect match of electrochemistry and membrane separation. Chin Chem Lett, 31 (10) ( 2020), pp. 2539-2548
PDF(1466 KB)

Accesses

Citation

Detail

段落导航
相关文章

/