纳米复合肺靶向递送突破Ad5预存免疫屏障

杨益隆, 吴诗坡, 王玉东, 邵方泽, 吕鹏, 李汭桦, 赵晓帆, 张军, 张晓鹏, 李建民, 侯利华, 徐俊杰, 陈薇

工程(英文) ›› 2023, Vol. 27 ›› Issue (8) : 127-139.

PDF(6288 KB)
PDF(6288 KB)
工程(英文) ›› 2023, Vol. 27 ›› Issue (8) : 127-139. DOI: 10.1016/j.eng.2022.12.007
研究论文
Article

纳米复合肺靶向递送突破Ad5预存免疫屏障

作者信息 +

Lung-Targeted Transgene Expression of Nanocomplexed Ad5 Enhances Immune Response in the Presence of Preexisting Immunity

Author information +
History +

摘要

重组5型腺病毒载体(Ad5)已成功用于埃博拉病毒、新型肺炎冠状病毒等新发突发传染病防控,然而针对病毒载体的预存免疫会对疫苗的免疫原性造成一定影响。维持重组Ad5型疫苗的高免疫原性并减少预存免疫效应,已成为该领域的重要研究方向。基于生物相容性纳米颗粒,本研究尝试通过调控Ad5与宿主的相互作用应对上述挑战。制备出的正电人血清白蛋白纳米颗粒[(+)HSAnp]能够与Ad5自组装形成复合物,针对柯萨奇病毒-腺病毒受体(CAR)阳性和阴性细胞均能显著提高靶基因表达量。在小鼠模型中,滴鼻吸入Ad5/(+)HSAnp复合物实现了高效(高达227倍)和长期(长达60天)的肺靶向靶基因表达,且增强效应可通过表面电位和给药剂量进行调控。经纳米复合的5型腺病毒载体埃博拉疫苗和新冠疫苗,在Ad5预存免疫模型中显著增强了体液免疫和黏膜免疫应答。本研究表明通过纳米颗粒调控病毒载体的聚集状态和表面电位,能够用于设计增强型的疫苗和基因治疗载体。

Abstract

Recombinant adenovirus serotype 5 (Ad5) vector has been widely applied in vaccine development targeting infectious diseases, such as Ebola virus disease and coronavirus disease 2019 (COVID-19). However, the high prevalence of preexisting anti-vector immunity compromises the immunogenicity of Ad5-based vaccines. Thus, there is a substantial unmet need to minimize preexisting immunity while improving the insert-induced immunity of Ad5 vectors. Herein, we address this need by utilizing biocompatible nanoparticles to modulate Ad5-host interactions. We show that positively charged human serum albumin nanoparticles ((+)HSAnp), which are capable of forming a complex with Ad5, significantly increase the transgene expression of Ad5 in both coxsackievirus-adenovirus receptor-positive and -negative cells. Furthermore, in charge- and dose-dependent manners, Ad5/(+)HSAnp complexes achieve robust (up to 227-fold higher) and long-term (up to 60 days) transgene expression in the lungs of mice following intranasal instillation. Importantly, in the presence of preexisting anti-Ad5 immunity, complexed Ad5-based Ebola and COVID-19 vaccines significantly enhance antigen-specific humoral response and mucosal immunity. These findings suggest that viral aggregation and charge modification could be leveraged to engineer enhanced viral vectors for vaccines and gene therapies.

关键词

5型腺病毒 / 疫苗 / 预存免疫 / 纳米颗粒 / 靶基因表达

Keywords

Adenovirus serotype 5 / Vaccine / Preexisting immunity / Nanoparticles / Transgene expression

引用本文

导出引用
杨益隆, 吴诗坡, 王玉东. 纳米复合肺靶向递送突破Ad5预存免疫屏障. Engineering. 2023, 27(8): 127-139 https://doi.org/10.1016/j.eng.2022.12.007

参考文献

[1]
J.L. Excler, M. Saville, S. Berkley, J.H. Kim. Vaccine development for emerging infectious diseases. Nat Med, 27 (4) (2021), pp. 591-600. DOI: 10.1038/s41591-021-01301-0
[2]
S. Rauch, E. Jasny, K.E. Schmidt, B. Petsch. New vaccine technologies to combat outbreak situations. Front Immunol, 9 (2018), p. 1963.
[3]
S.A. Halperin, L. Ye, D. MacKinnon-Cameron, B. Smith, P.E. Cahn, G.M. Ruiz-Palacios, et al. Final efficacy analysis, interim safety analysis, and immunogenicity of a single dose of recombinant novel coronavirus vaccine (adenovirus type 5 vector) in adults 18 years and older: an international, multicentre, randomised, double-blinded, placebo-controlled phase 3 trial. Lancet, 399 (10321) (2022), pp. 237-248.
[4]
F.C. Zhu, X.H. Guan, Y.H. Li, J.Y. Huang, T. Jiang, L.H. Hou, et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet, 396 (10249) (2020), pp. 479-488.
[5]
F.C. Zhu, Y.H. Li, X.H. Guan, L.H. Hou, W.J. Wang, J.X. Li, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet, 395 (10240) (2020), pp. 1845-1854.
[6]
M.P. Grobusch, A. Goorhuis. Safety and immunogenicity of a recombinant adenovirus vector-based Ebola vaccine. Lancet, 389 (10069) (2017), pp. 578-580.
[7]
J.E. Ledgerwood, A.D. DeZure, D.A. Stanley, E.E. Coates, L. Novik, M.E. Enama, et al. Chimpanzee adenovirus vector Ebola vaccine. N Engl J Med, 376 (10) (2017), pp. 928-938
[8]
F.C. Zhu, L.H. Hou, J.X. Li, S.P. Wu, P. Liu, G.R. Zhang, et al. Safety and immunogenicity of a novel recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in China:preliminary report of a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet, 385 (9984) (2015), pp. 2272-2279.
[9]
F.C. Zhu, A.H. Wurie, L.H. Hou, Q. Liang, Y.H. Li, J.B. Russell, et al. Safety and immunogenicity of a recombinant adenovirus type-5 vector-based Ebola vaccine in healthy adults in Sierra Leone: a single-centre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet, 389 (10069) (2017), pp. 621-628.
[10]
Q. Guo, J.F. Chan, V.K. Poon, S. Wu, C.C. Chan, L. Hou, et al. Immunization with a novel human type 5 adenovirus-vectored vaccine expressing the premembrane and envelope proteins of Zika virus provides consistent and sterilizing protection in multiple immunocompetent and immunocompromised animal models. J Infect Dis, 218 (3) (2018), pp. 365-377. DOI: 10.1093/infdis/jiy187
[11]
B.L. Bullard, B.N. Corder, D.N. Gordon, T.C. Pierson, E.A. Weaver. Characterization of a species E adenovirus vector as a Zika virus vaccine. Sci Rep, 10 (1) (2020), p. 3613.
[12]
F. Smaill, M. Jeyanathan, M. Smieja, M.F. Medina, N. Thanthrige-Don, A. Zganiacz, et al. A human type 5 adenovirus-based tuberculosis vaccine induces robust T cell responses in humans despite preexisting anti-adenovirus immunity. Sci Transl Med, 5(205):205ra134 (2013)
[13]
R.N. Van Zyl-Smit, A. Esmail, M.E. Bateman, R. Dawson, J. Goldin, E. van Rikxoort, et al. Safety and immunogenicity of adenovirus 35 tuberculosis vaccine candidate in adults with active or previous tuberculosis. A randomized trial. Am J Respir Crit Care Med, 195 (9) (2017), pp. 1171-1180.
[14]
H. Fausther-Bovendo, G.P. Kobinger. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what's important?. Hum Vaccin Immunother, 10 (10) (2014), pp. 2875-2884. DOI: 10.4161/hv.29594
[15]
F.J.D. Mennechet, O. Paris, A.R. Ouoba, S. Salazar Arenas, S.B. Sirima, G.R. Takoudjou Dzomo, et al. A review of 65 years of human adenovirus seroprevalence. Expert Rev Vaccines, 18 (6) (2019), pp. 597-613. DOI: 10.1080/14760584.2019.1588113
[16]
B. Yu, Y. Zhou, H. Wu, Z. Wang, Y. Zhan, X. Feng, et al. Seroprevalence of neutralizing antibodies to human adenovirus type 5 in healthy adults in China. J Med Virol, 84 (9) (2012), pp. 1408-1414. DOI: 10.1002/jmv.23325
[17]
P.M. Folegatti, K.J. Ewer, P.K. Aley, B. Angus, S. Becker, S. Belij-Rammerstorfer, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 396 (10249) (2020), pp. 467-478.
[18]
J. Sadoff, G. Gray, A. Vandebosch, V. Cárdenas, G. Shukarev, B. Grinsztejn, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19. N Engl J Med, 384 (23) (2021), pp. 2187-2201. DOI: 10.1056/nejmoa2101544
[19]
P. Abbink, A.A. Lemckert, B.A. Ewald, D.M. Lynch, M. Denholtz, S. Smits, et al. Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D. J Virol, 81 (9) (2007), pp. 4654-4663.
[20]
S. Lu. Heterologous prime-boost vaccination. Curr Opin Immunol, 21 (3) (2009), pp. 346-351.
[21]
R. Singh, K.T. Al-Jamal, L. Lacerda, K. Kostarelos. Nanoengineering artificial lipid envelopes around adenovirus by self-assembly. ACS Nano, 2 (5) (2008), pp. 1040-1050. DOI: 10.1021/nn8000565
[22]
C.R. O'Riordan, A. Lachapelle, C. Delgado, V. Parkes, S.C. Wadsworth, A.E. Smith, et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther, 10 (8) (1999), pp. 1349-1358. DOI: 10.1089/10430349950018021
[23]
Q. Zeng, J. Han, D. Zhao, T. Gong, Z. Zhang, X. Sun. Protection of adenovirus from neutralizing antibody by cationic PEG derivative ionically linked to adenovirus. Int J Nanomedicine, 7 (2012), pp. 985-997.
[24]
J.L. Domingo, J. Rovira. Effects of air pollutants on the transmission and severity of respiratory viral infections. Environ Res, 187 (2020), Article 109650.
[25]
R. Cazzolla Gatti, A. Velichevskaya, A. Tateo, N. Amoroso, A. Monaco. Machine learning reveals that prolonged exposure to air pollution is associated with SARS-CoV-2 mortality and infectivity in Italy. Environ Pollut, 267 (2020), Article 115471.
[26]
C. Sattler, F. Moritz, S. Chen, B. Steer, D. Kutschke, M. Irmler, et al. Nanoparticle exposure reactivates latent herpesvirus and restores a signature of acute infection. Part Fibre Toxicol, 14 (1) (2017), p. 2.
[27]
H. Chen, X. Zheng, J. Nicholas, S.T. Humes, J.C. Loeb, S.E. Robinson, et al. Single-walled carbon nanotubes modulate pulmonary immune responses and increase pandemic influenza a virus titers in mice. Virol J, 14 (1) (2017), p. 242. DOI: 10.1007/s11726-017-1008-9
[28]
B. Borrego, G. Lorenzo, J.D. Mota-Morales, H. Almanza-Reyes, F. Mateos, E. López-Gil, et al. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomedicine, 12 (5) (2016), pp. 1185-1192.
[29]
C.C. Smallcombe, T.J. Harford, D.T. Linfield, S. Lechuga, V. Bokun, G. Piedimonte, et al. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol, 319 (3) (2020), pp. L481-L496. DOI: 10.1152/ajplung.00104.2020
[30]
P.K. Paik, L.P. James, G.J. Riely, C.G. Azzoli, V.A. Miller, K.K. Ng, et al. A phase 2 study of weekly albumin-bound paclitaxel (Abraxane®) given as a two-hour infusion. Cancer Chemother Pharmacol, 68 (5) (2011), pp. 1331-1337. DOI: 10.1007/s00280-011-1621-0
[31]
M. Yan, J. Du, Z. Gu, M. Liang, Y. Hu, W. Zhang, et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat Nanotechnol, 5 (1) (2010), pp. 48-53. DOI: 10.1038/nnano.2009.341
[32]
S. Wu, G. Zhong, J. Zhang, L. Shuai, Z. Zhang, Z. Wen, et al. A single dose of an adenovirus-vectored vaccine provides protection against SARS-CoV-2 challenge. Nat Commun, 11 (1) (2020), p. 4081.
[33]
D. Wu, Y. Yang, P. Xu, D. Xu, Y. Liu, R. Castillo, et al. Real-time quantification of cell internalization kinetics by functionalized boluminescent nanoprobes. Adv Mater, 31 (39) (2019), p. e1902469
[34]
D. Werk, S. Schubert, V. Lindig, H.P. Grunert, H. Zeichhardt, V.A. Erdmann, et al. Developing an effective RNA interference strategy against a plus-strand RNA virus: silencing of coxsackievirus B3 and its cognate coxsackievirus-adenovirus receptor. Biol Chem, 386 (9) (2005), pp. 857-863.
[35]
P.W. Roelvink, A. Lizonova, J.G. Lee, Y. Li, J.M. Bergelson, R.W. Finberg, et al. The coxsackievirus-adenovirus receptor protein can function as a cellular attachment protein for adenovirus serotypes from subgroups A, C, D, E, and F. J Virol, 72 (10) (1998), pp. 7909-7915. DOI: 10.1128/jvi.72.10.7909-7915.1998
[36]
S.M. Sumida, D.M. Truitt, A.A. Lemckert, R. Vogels, J.H. Custers, M.M. Addo, et al. Neutralizing antibodies to adenovirus serotype 5 vaccine vectors are directed primarily against the adenovirus hexon protein. J Immunol, 174 (11) (2005), pp. 7179-7185. DOI: 10.4049/jimmunol.174.11.7179
[37]
A. Nilchian, E. Plant, M.M. Parniewska, A. Santiago, A. Rossignoli, J. Skogsberg, et al. Induction of the coxsackievirus and adenovirus receptor in macrophages during the formation of atherosclerotic plaques. J Infect Dis, 222 (12) (2020), pp. 2041-2051. DOI: 10.1093/infdis/jiaa418
[38]
R.P. Tomko, R. Xu, L. Philipson. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA, 94 (7) (1997), pp. 3352-3356.
[39]
P. Sharma, A.O. Kolawole, S.M. Wiltshire, K. Frondorf, K. Excoffon. Accessibility of the coxsackievirus and adenovirus receptor and its importance in adenovirus gene transduction efficiency. J Gen Virol, 93 (Pt 1) (2012), pp. 155-158. DOI: 10.1099/vir.0.036269-0
[40]
N. Okada, Y. Tsukada, S. Nakagawa, H. Mizuguchi, K. Mori, T. Saito, et al. Efficient gene delivery into dendritic cells by fiber-mutant adenovirus vectors. Biochem Biophys Res Commun, 282 (1) (2001), pp. 173-179.
[41]
R.J. Kaner, S. Worgall, P.L. Leopold, E. Stolze, E. Milano, C. Hidaka, et al. Modification of the genetic program of human alveolar macrophages by adenovirus vectors in vitro is feasible but inefficient, limited in part by the low level of expression of the coxsackie/adenovirus receptor. Am J Respir Cell Mol Biol, 20 (3) (1999), pp. 361-370. DOI: 10.1165/ajrcmb.20.3.3398
[42]
S. Worgall, T.S. Worgall, K. Kostarelos, R. Singh, P.L. Leopold, N.R. Hackett, et al. Free cholesterol enhances adenoviral vector gene transfer and expression in CAR-deficient cells. Mol Ther, 1 (1) (2000), pp. 39-48.
[43]
L. Coughlan. Factors which contribute to the immunogenicity of non-replicating adenoviral vectored vaccines. Front Immunol, 11 (2020), p. 909.
[44]
C.N. Fries, E.J. Curvino, J.L. Chen, S.R. Permar, G.G. Fouda, J.H. Collier. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat Nanotechnol, 16 (4) (2021), pp. 1-14. DOI: 10.1038/s41565-020-0739-9
[45]
M.D. Shin, S. Shukla, Y.H. Chung, V. Beiss, S.K. Chan, O.A. Ortega-Rivera, et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat Nanotechnol, 15 (8) (2020), pp. 646-655. DOI: 10.1038/s41565-020-0737-y
[46]
X. Hou, T. Zaks, R. Langer, Y. Dong. Lipid nanoparticles for mRNA delivery. Nat Rev Mater, 6 (12) (2021), pp. 1078-1094. DOI: 10.1038/s41578-021-00358-0
[47]
A.M. Kahler, T.L. Cromeans, M.G. Metcalfe, C.D. Humphrey, V.R. Hill. Aggregation of adenovirus 2 in source water and impacts on disinfection by chlorine. Food Environ Virol, 8 (2) (2016), pp. 148-155. DOI: 10.1007/s12560-016-9232-x
[48]
N. Mendez, V. Herrera, L. Zhang, F. Hedjran, R. Feuer, S.L. Blair, et al. Encapsulation of adenovirus serotype 5 in anionic lecithin liposomes using a bead-based immunoprecipitation technique enhances transfection efficiency. Biomaterials, 35 (35) (2014), pp. 9554-9561.
[49]
A. Wortmann, S. Vöhringer, T. Engler, S. Corjon, R. Schirmbeck, J. Reimann, et al. Fully detargeted polyethylene glycol-coated adenovirus vectors are potent genetic vaccines and escape from pre-existing anti-adenovirus antibodies. Mol Ther, 16 (1) (2008), pp. 154-162. DOI: 10.1038/sj.mt.6300306
[50]
J. Wagner, L. Li, J. Simon, L. Krutzke, K. Landfester, V. Mailänder, et al. Amphiphilic polyphenylene dendron conjugates for surface remodeling of adenovirus 5. Angew Chem Int Ed Engl, 59 (14) (2020), pp. 5712-5720. DOI: 10.1002/anie.201913708
[51]
Z. Ji, Z. Xie, Z. Zhang, T. Gong, X. Sun. Engineering intravaginal vaccines to overcome mucosal and epithelial barriers. Biomaterials, 128 (2017), pp. 8-18.
[52]
H.E. Davis, M. Rosinski, J.R. Morgan, M.L. Yarmush. Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys J, 86 (2) (2004), pp. 1234-1242.
[53]
C. Wallis, J.L. Melnick. Virus aggregation as the cause of the non-neutralizable persistent fraction. J Virol, 1 (3) (1967), pp. 478-488. DOI: 10.1128/jvi.1.3.478-488.1967
[54]
S. Wu, J. Huang, Z. Zhang, J. Wu, J. Zhang, H. Hu, et al. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: preliminary report of an open-label and randomised phase 1 clinical trial. Lancet Infect Dis, 21 (12) (2021), pp. 1654-1664.
[55]
A.K. Patel, J.C. Kaczmarek, S. Bose, K.J. Kauffman, F. Mir, M.W. Heartlein, et al. Inhaled nanoformulated mRNA polyplexes for protein production in lung epithelium. Adv Mater, 31 (8) (2019), p. e1805116
[56]
P. Mastorakos, A.L. da Silva, J. Chisholm, E. Song, W.K. Choi, M.P. Boyle, et al. Highly compacted biodegradable DNA nanoparticles capable of overcoming the mucus barrier for inhaled lung gene therapy. Proc Natl Acad Sci USA, 112 (28) (2015), pp. 8720-8725. DOI: 10.1073/pnas.1502281112
[57]
C.A. Fromen, T.B. Rahhal, G.R. Robbins, M.P. Kai, T.W. Shen, J.C. Luft, et al. Nanoparticle surface charge impacts distribution, uptake and lymph node trafficking by pulmonary antigen-presenting cells. Nanomedicine, 12 (3) (2016), pp. 677-687.
[58]
Q. Cheng, T. Wei, L. Farbiak, L.T. Johnson, S.A. Dilliard, D.J. Siegwart. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat Nanotechnol, 15 (4) (2020), pp. 313-320. DOI: 10.1038/s41565-020-0669-6
PDF(6288 KB)

Accesses

Citation

Detail

段落导航
相关文章

/