[1] |
A. Goeppert, M. Czaun, R.B. May, G.K.S. Prakash, G.A. Olah, S.R. Narayanan. Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. J Am Chem Soc, 133 (50) ( 2011), pp. 20164-20167 DOI: 10.1021/ja2100005
|
[2] |
International Energy Agency (IEA). Global energy review:CO2 emissions in 2021. Report. Paris: International Energy Agency; 2021.
|
[3] |
Brown DW. A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering; 2000 Jan 24-26; Stanford, CA, USA. Stanford: Stanford Geothermal Program Workshop; 2000. p. 1-6.
|
[4] |
K. Pruess. Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics, 35 (4) ( 2006), pp. 351-367
|
[5] |
K. Pruess. On production behavior of enhanced geothermal systems with CO2 as working fluid. Energy Convers Manage, 49 (6) ( 2008), pp. 1446-1454
|
[6] |
A.D. Atrens, H. Gurgenci, V. Rudolph. CO 2 thermosiphon for competitive geothermal power generation. Energy Fuels, 23 (1) ( 2009), pp. 553-557 DOI: 10.1021/ef800601z
|
[7] |
A.D. Atrens, H. Gurgenci, V. Rudolph. Electricity generation using a carbon-dioxide thermosiphon. Geothermics, 39 (2) ( 2010), pp. 161-169
|
[8] |
B.M. Adams, T.H. Kuehn, J.M. Bielicki, J.B. Randolph, M.O. Saar. A comparison of electric power output of CO2 plume geothermal (CPG) and brine geothermal systems for varying reservoir conditions. Appl Energy, 140 ( 2015), pp. 365-377
|
[9] |
J.B. Randolph, B.M. Adams, T.H. Kuehn, M.O. Saar. Wellbore heat transfer in CO2-based geothermal systems. Trans Geotherm Resour Coun, 36 ( 2012), pp. 546-554
|
[10] |
Pruess K. Enhanced geothermal systems (EGS):comparing water and CO2 as heat transmission fluids. In:Proceedings of the New Zealand Geothermal Workshop; 2006 Nov 28; Auckland, New Zealand. Auckland: Geothermal Association; 2007. p. 1-13.
|
[11] |
J.B. Randolph, M.O. Saar. Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophys Res Lett, 38 (10) ( 2011), p. L10401
|
[12] |
J.B. Randolph, M.O. Saar. Impact of reservoir permeability on the choice of subsurface geothermal heat exchange fluid: CO2 versus water and native brine. Trans Geotherm Resour Counc, 35 ( 2011), pp. 521-526
|
[13] |
Liu Y, Hou J. Selective adsorption of CO2/CH4 mixture on clay-rich shale using molecular simulations. J CO2 Util 2020; 39: 101143.
|
[14] |
J.M. Bielicki, M.F. Pollak, J.P. Fitts, C.A. Peters, E.J. Wilson. Causes and financial consequences of geologic CO2 storage reservoir leakage and interference with other subsurface resources. Int J Greenh Gas Control, 20 ( 2014), pp. 272-284
|
[15] |
J.M. Bielicki, C.A. Peters, J.P. Fitts, E.J. Wilson. An examination of geologic carbon sequestration policies in the context of leakage potential. Int J Greenh Gas Control, 37 ( 2015), pp. 61-75
|
[16] |
J.M. Bielicki, M.F. Pollak, H. Deng, E.J. Wilson, J.P. Fitts, C.A. Peters. The leakage risk monetization model for geologic CO 2 storage. Environ Sci Technol, 50 (10) ( 2016), pp. 4923-4931 DOI: 10.1021/acs.est.5b05329
|
[17] |
J. Gibbins, H. Chalmers. Carbon capture and storage. Energy Policy, 36 (12) ( 2008), pp. 4317-4322
|
[18] |
J. Ezekiel, A. Ebigbo, B.M. Adams, M.O. Saar. Combining natural gas recovery and CO2-based geothermal energy extraction for electric power generation. Appl Energy, 269 ( 2020), Article 115012
|
[19] |
M. Hefny, C.Z. Qin, M.O. Saar, A. Ebigbo. Synchrotron-based pore-network modeling of two-phase flow in Nubian Sandstone and implications for capillary trapping of carbon dioxide. Int J Greenh Gas Control, 103 ( 2020), Article 103164
|
[20] |
M.R. Fleming, B.M. Adams, J.D. Ogland-Hand, J.M. Bielicki, T.H. Kuehn, M.O. Saar. Flexible CO2-plume geothermal (CPG-F): using geologically stored CO2 to provide dispatchable power and energy storage. Energy Convers Manage, 253 ( 2022), Article 115082
|
[21] |
Intergovernmental Panel on Climate Change (IPCC). Special report on carbon dioxide capture and storage. Report. Cambridge: Cambridge University Press; 2005.
|
[22] |
D. Presser, V.G. Cafaro, D. Cafaro. Optimal sourcing, supply and development of carbon dioxide networks for enhanced oil recovery in CCUS systems. Computer-Aided Chem Eng, 49 ( 2022), pp. 493-498
|
[23] |
W. Ampomah, R.S. Balch, M. Cather, R. Will, D. Gunda, Z. Dai, et al.. Optimum design of CO2 storage and oil recovery under geological uncertainty. Appl Energy, 195 ( 2017), pp. 80-92
|
[24] |
W. Jia, B. McPherson, F. Pan, Z. Dai, T. Xiao. Uncertainty quantification of CO2 storage using Bayesian model averaging and polynomial chaos expansion. Int J Greenh Gas Control, 71 ( 2018), pp. 104-115
|
[25] |
E. Keating, D. Bacon, S. Carroll, K. Mansoor, Y. Sun, L. Zheng, et al.. Applicability of aquifer impact models to support decisions at CO2 sequestration sites. Int J Greenh Gas Control, 52 ( 2016), pp. 319-330
|
[26] |
J. Jiang, Z. Rui, R. Hazlett, J. Lu. An integrated technical-economic model for evaluating CO2 enhanced oil recovery development. Appl Energy, 247 ( 2019), pp. 190-211
|
[27] |
K.R. Chaturvedi, T. Sharma. In-situ formulation of pickering CO2 foam for enhanced oil recovery and improved carbon storage in sandstone formation. Chem Eng Sci, 235 ( 2021), Article 116484
|
[28] |
M.G. Rezk, J. Foroozesh, D. Zivar, M. Mumtaz. CO2 storage potential during CO2 enhanced oil recovery in sandstone reservoirs. J Nat Gas Sci Eng, 66 ( 2019), pp. 233-243
|
[29] |
Y. Gu, S. Zhang, Y. She. Effects of polymers as direct CO2 thickeners on the mutual interactions between a light crude oil and CO2. J Polym Res, 20 (2) ( 2013), p. 61
|
[30] |
F. Pan, B.J. McPherson, Z. Dai, W. Jia, S.Y. Lee, W. Ampomah, et al.. Uncertainty analysis of carbon sequestration in an active CO2-EOR field. Int J Greenh Gas Control, 51 ( 2016), pp. 18-28
|
[31] |
A. Davarpanah, B. Mirshekari. Experimental study of CO 2 solubility on the oil recovery enhancement of heavy oil reservoirs. J Therm Anal Calorim, 139 (2) ( 2020), pp. 1161-1169 DOI: 10.1007/s10973-019-08498-w
|
[32] |
Y. Liu, H. Li, R. Okuno. Measurements and modeling of interfacial tension of CO 2-CH 4-brine system at reservoir conditions. Ind Eng Chem Res, 55 (48) ( 2016), pp. 12358-12375 DOI: 10.1021/acs.iecr.6b02446
|
[33] |
S. Kong, G. Feng, Y. Liu, K. Li. Potential of dimethyl ether as an additive in CO2 for shale oil recovery. Fuel, 296 ( 2021), Article 120643
|
[34] |
X. Huang, A. Li, X. Li, Y. Liu. Influence of typical core minerals on tight oil recovery during CO 2 flooding using the nuclear magnetic resonance technique. Energy Fuels, 33 (8) ( 2019), pp. 7147-7154 DOI: 10.1021/acs.energyfuels.9b01220
|
[35] |
N.A. Azzolina, D.V. Nakles, C.D. Gorecki, W.D. Peck, S.C. Ayash, L.S. Melzer, et al.. CO2 storage associated with CO2 enhanced oil recovery: a statistical analysis of historical operations. Int J Greenh Gas Control, 37 ( 2015), pp. 384-397
|
[36] |
M.D. Aminu, S.A. Nabavi, C.A. Rochelle, V. Manovic. A review of developments in carbon dioxide storage. Appl Energy, 208 ( 2017), pp. 1389-1419
|
[37] |
S. Bachu. Identification of oil reservoirs suitable for CO2-EOR and CO2 storage (CCUS) using reserves databases, with application to Alberta, Canada. Int J Greenh Gas Control, 44 ( 2016), pp. 152-165
|
[38] |
W. Yang, B. Peng, Q. Liu, S. Wang, Y. Dong, Y. Lai. Evaluation of CO2 enhanced oil recovery and CO2 storage potential in oil reservoirs of Bohai Bay Basin. China Int J Greenh Gas Control, 65 ( 2017), pp. 86-98
|
[39] |
Ahmed T. Minimum miscibility pressure from EOS. In: Proceedings of Canadian International Petroleum Conference; 2000 Jun 4-8; Calgary, AB, Canada. Calgary: Petroleum Society of Canada; 2000.
|
[40] |
B. Ren, S. Ren, L. Zhang, G. Chen, H. Zhang. Monitoring on CO2 migration in a tight oil reservoir during CCS-EOR in Jilin Oilfield China. Energy, 98 ( 2016), pp. 108-121
|
[41] |
Rommerskirchen R, Nijssen P, Bilgili H, Sottmann T. Additives for CO2 EOR applications. In:Proceedings of Annual Technical Conference and Exhibition (ACTE); 2016 Sep 26-28; Dubai, United Arab Emirates. Dubai: Society of Petroleum Engineers; 2016.
|
[42] |
Y. Liu, Z. Rui. A storage-driven CO 2 EOR for net-zero emission target. Engineering, 18 (11) ( 2022), pp. 79-87 DOI: 10.1117/12.2623962
|
[43] |
Y. Liu, Z. Rui, T. Yang, B. Dindoruk. Using propanol as an additive to CO2 for improving CO2 utilization and storage in oil reservoirs. Appl Energy, 311 ( 2022), Article 118640
|
[44] |
M.M. Salehi, M.A. Safarzadeh, E. Sahraei, S.A.T. Nejad. Comparison of oil removal in surfactant alternating gas with water alternating gas, water flooding and gas flooding in secondary oil recovery process. J Petrol Sci Eng, 120 ( 2014), pp. 86-93
|
[45] |
Z. Dai, R. Middleton, H. Viswanathan, J. Fessenden-Rahn, J. Bauman, R. Pawar, et al.. An integrated framework for optimizing CO 2 sequestration and enhanced oil recovery. Environ Sci Technol Lett, 1 (1) ( 2014), pp. 49-54 DOI: 10.1021/ez4001033
|
[46] |
A.R. Adebayo, M.S. Kamal, A.A. Barri. An experimental study of gas sequestration efficiency using water alternating gas and surfactant alternating gas methods. J Nat Gas Sci Eng, 42 ( 2017), pp. 23-30
|
[47] |
X. Zhao, X. Liao, W. Wang, C. Chen, C. Liao, Z. Rui. Estimation of CO2 storage capacity in oil reservoir after waterflooding: Case studies in Xinjiang Oilfield from west China. Adv Mat Res, 734-7 ( 2013), pp. 1183-1188
|
[48] |
X. Zhao, X. Liao, W. Wang, C. Chen, Z. Rui, H. Wang. The CO2 storage capacity evaluation: methodology and determination of key factors. J Energy Inst, 87 (4) ( 2014), pp. 297-305
|
[49] |
Zhao X, Rui Z, Liao X. case studies on the CO2 storage and EOR. In heterogeneous, highly water-saturated, and extra-low permeability Chinese reservoir. J Nat Gas Sci Eng, 2016;29:275-83.
|
[50] |
T. Xu, J. Li. Reactive transport modeling to address the issue of CO2 geological sequestration. Procedia Earth Planet Sci, 7 ( 2013), pp. 912-915
|
[51] |
T. Xu, J.A. Apps, K. Pruess. Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Appl Geochem, 19 (6) ( 2004), pp. 917-936
|
[52] |
Oldenburg CM, Pan L. TOGA:A TOUGH code for modeling three-phase, multicomponent, and non-isothermal processes involved in CO2-based enhanced oil recovery. Report. Berkeley: Lawrence Berkeley National Laboratory; 2019.
|
[53] |
G. Yeh, S. Tripathi. A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour Res, 27 (12) ( 1991), pp. 3075-3094
|
[54] |
Hu T. Study on the process model of CO2 migration and phase transformation in enhanced oil recovery system [dissertation]. Changchun: Jilin University; 2022. Chinese.
|
[55] |
L. Pan, C.M. Oldenburg. T2Well—an integrated wellbore-reservoir simulator. Comput Geosci, 65 ( 2014), pp. 46-55
|
[56] |
H.J. Ramey. Wellbore heat transmission. J Pet Technol, 14 (04) ( 1962), pp. 427-435
|
[57] |
Guo X, Du Z, Sun L, Fu Y, Huang W, Zhang C. Optimization of tertiary water-alternate-CO2 flood in Jilin oil field of China: laboratory and simulation studies. In: Proceedings of SPE/DOE Symposium on Improved Oil Recovery; 2006 Apr 22-26; Tulsa, OK, USA. Richardson: OnePetro; 2006. p. SPE-99616-MS.
|
[58] |
Z. Hu, T. Xu, B. Feng, Y. Yuan, F. Li, G. Feng, et al.. Thermal and fluid processes in a closed-loop geothermal system using CO2 as a working fluid. Renew Energy, 154 ( 2020), pp. 351-367
|
[59] |
Lei H. Deposition mechanisms and reservoir protection countermeasures of a low-permeability formation in CO2 flooding process [dissertation]. Beijing: China University of Petroleum; 2017. Chinese.
|
[60] |
L. Zhang, X. Li, B. Ren, G. Cui, Y. Zhang, S. Ren, et al.. CO2 storage potential and trapping mechanisms in the H-59 block of Jilin Oilfield China. Int J Greenh Gas Control, 49 ( 2016), pp. 267-280
|
[61] |
H. Tian, F. Pan, T. Xu, B.J. McPherson, G. Yue, P. Mandalaparty. Impacts of hydrological heterogeneities on caprock mineral alteration and containment of CO2 in geological storage sites. Int J Greenh Gas Control, 24 ( 2014), pp. 30-42
|
[62] |
S.E. Quiñones-Cisneros, C.K. Zéberg-Mikkelsen, E.H. Stenby. The friction theory (f-theory) for viscosity modeling. Fluid Phase Equilib, 169 (2) ( 2000), pp. 249-276
|
[63] |
S. Aprhornratana, I.W. Eames. Thermodynamic analysis of absorption refrigeration cycles using the second law of thermodynamics method. Int J Refrig, 18 (4) ( 1995), pp. 244-252
|
[64] |
A. Vidal, R. Best, R. Rivero, J. Cervantes. Analysis of a combined power and refrigeration cycle by the exergy method. Energy, 31 (15) ( 2006), pp. 3401-3414
|