[1] |
P.S. Kim, N.R. Shin, J.B. Lee, M.S. Kim, T.W. Whon, D.W. Hyun, et al.. Host habitat is the major determinant of the gut microbiome of fish. Microbiome, 9 (1) ( 2021), p. 166
|
[2] |
M. Ruiz-Rodríguez, M. Scheifler, S. Sanchez-Brosseau, E. Magnanou, N. West, M. Suzuki, et al.. Host species and body site explain the variation in the microbiota associated to wild sympatric Mediterranean teleost fishes. Microb Ecol, 80 (1) ( 2020), pp. 212-222. DOI: 10.1007/s00248-020-01484-y
|
[3] |
K. Meng, L. Ding, S. Wu, Z. Wu, G. Cheng, X. Zhai, et al.. Interactions between commensal microbiota and mucosal immunity in teleost fish during viral infection with SVCV. Front Immunol, 12 ( 2021), Article 654758
|
[4] |
A. Ramesh, E.S. Bailey, V. Ahyong, C. Langelier, M. Phelps, N. Neff, et al.. Metagenomic characterization of swine slurry in a North American swine farm operation. Sci Rep, 11 (1) ( 2021), p. 16994
|
[5] |
A.D. Kostic, M.R. Howitt, W.S. Garrett. Exploring host-microbiota interactions in animal models and humans. Gene Dev, 27 (7) ( 2013), pp. 701-718. DOI: 10.1101/gad.212522.112
|
[6] |
J.F. Rawls, B.S. Samuel, J.I. Gordon. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci USA, 101 (13) ( 2004), pp. 4596-4601
|
[7] |
A. Wang, Z. Zhang, Q. Ding, Y. Yang, J. Bindelle, C. Ran, et al.. Intestinal Cetobacterium and acetate modify glucose homeostasis via parasympathetic activation in zebrafish. Gut Microbes, 13 (1) ( 2021), pp. 1-15
|
[8] |
M.S. Llewellyn, S. Boutin, S.H. Hoseinifar, N. Derome. Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Front Microbiol, 5 ( 2014), p. 207
|
[9] |
A.R. Wang, C. Ran, E. Ringø, Z.G. Zhou. Progress in fish gastrointestinal microbiota research. Rev Aquacult, 10 (3) ( 2018), pp. 626-640. DOI: 10.1111/raq.12191
|
[10] |
E. Ringø, Z. Zhou, J.L.G. Vecino, S. Wadsworth, J. Romero, Å. Krogdahl, et al.. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story?. Aquacult Nutr, 22 (2) ( 2016), pp. 219-282. DOI: 10.1111/anu.12346
|
[11] |
H. Liu, X. Guo, R. Gooneratne, R. Lai, C. Zeng, F. Zhan, et al.. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci Rep, 6 ( 2016), p. 24340
|
[12] |
Z.A. Pratte, M. Besson, R.D. Hollman, F.J. Stewart, A.J. McBain. The gills of reef fish support a distinct microbiome influenced by host-specific factors. Appl Environ Microbiol, 84 (9) ( 2018), pp. e00063-118
|
[13] |
M. Chiarello, J.C. Auguet, Y. Bettarel, C. Bouvier, T. Claverie, N.A.J. Graham, et al.. Skin microbiome of coral reef fish is highly variable and driven by host phylogeny and diet. Microbiome, 6 ( 2018), p. 147
|
[14] |
T.P.R.A. Legrand, S.R. Catalano, M.L. Wos-Oxley, F. Stephens, M. Landos, M.S. Bansemer, et al.. The inner workings of the outer surface: skin and gill microbiota as indicators of changing gut health in yellowtail kingfish. Front Microbiol, 8 ( 2018), p. 2664
|
[15] |
G. Roeselers, E.K. Mittge, W.Z. Stephens, D.M. Parichy, C.M. Cavanaugh, K. Guillemin, et al.. Evidence for a core gut microbiota in the zebrafish. ISME J, 5 (10) ( 2011), pp. 1595-1608. DOI: 10.1038/ismej.2011.38
|
[16] |
F. Kokou, G. Sasson, J. Friedman, S. Eyal, O. Ovadia, S. Harpaz, et al.. Core gut microbial communities are maintained by beneficial interactions and strain variability in fish. Nat Microbiol, 4 (12) ( 2019), pp. 2456-2465. DOI: 10.1038/s41564-019-0560-0
|
[17] |
R.I. Vestrum, K.J.K. Attramadal, O. Vadstein, M.S. Gundersen, I. Bakke. Bacterial community assembly in Atlantic cod larvae (Gadus morhua): contributions of ecological processes and metacommunity structure. FEMS Microbiol Ecol ( 2020; 96(9):fiaa163.)
|
[18] |
T. Li, M. Long, F.J. Gatesoupe, Q. Zhang, A. Li, X. Gong. Comparative analysis of the intestinal bacterial communities in different species of carp by pyrosequencing. Microb Ecol, 69 (1) ( 2015), pp. 25-36. DOI: 10.1007/s00248-014-0480-8
|
[19] |
K. Daly, J. Kelly, A.W. Moran, R. Bristow, I.S. Young, A.R. Cossins, et al.. Host selectively contributes to shaping intestinal microbiota of carnivorous and omnivorous fish. J Gen Appl Microbiol, 65 (3) ( 2019), pp. 129-136. DOI: 10.2323/jgam.2018.07.003
|
[20] |
W.Z. Stephens, A.R. Burns, K. Stagaman, S. Wong, J.F. Rawls, K. Guillemin, et al.. The composition of the zebrafish intestinal microbial community varies across development. ISME J, 10 (3) ( 2016), pp. 644-654. DOI: 10.1038/ismej.2015.140
|
[21] |
X. Li, L. Zhou, Y. Yu, J. Ni, W. Xu, Q. Yan. Composition of gut microbiota in the gibel carp (Carassius auratus gibelio) varies with host development. Microb Ecol, 74 (1) ( 2017), pp. 239-249
|
[22] |
L.A. Bolte, A. Vich Vila, F. Imhann, V. Collij, R. Gacesa, V. Peters, et al.. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome. Gut, 70 (7) ( 2021), pp. 1287-1298. DOI: 10.1136/gutjnl-2020-322670
|
[23] |
J.W. Walburn, B. Wemheuer, T. Thomas, E. Copeland, W. O’Connor, M. Booth, et al.. Diet and diet-associated bacteria shape early microbiome development in yellowtail kingfish (Seriola lalandi). Microb Biotechnol, 12 (2) ( 2019), pp. 275-288
|
[24] |
S. Rimoldi, G. Terova, C. Ascione, R. Giannico, F. Brambilla. Next generation sequencing for gut microbiome characterization in rainbow trout ( Oncorhynchus mykiss) fed animal by-product meals as an alternative to fishmeal protein sources. PLoS One, 13 (3) ( 2018), p. e0193652. DOI: 10.1371/journal.pone.0193652
|
[25] |
L. Ye, J. Amberg, D. Chapman, M. Gaikowski, W.T. Liu. Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. ISME J, 8 (3) ( 2014), pp. 541-551. DOI: 10.1038/ismej.2013.181
|
[26] |
Y. Li, K. Gajardo, A. Jaramillo-Torres, T.M. Kortner, Å. Krogdahl. Consistent changes in the intestinal microbiota of Atlantic salmon fed insect meal diets. Anim Microbiome, 4 (1) ( 2022), p. 8. DOI: 10.1167/tvst.11.2.8
|
[27] |
G. Gaudioso, G. Marzorati, F. Faccenda, T. Weil, F. Lunelli, G. Cardinaletti, et al.. Processed animal proteins from insect and poultry by-products in a fish meal-free diet for rainbow trout: impact on intestinal microbiota and inflammatory markers. Int J Mol Sci, 22 (11) ( 2021), p. 5454. DOI: 10.3390/ijms22115454
|
[28] |
H. Guo, C. Chen, X. Yan, Y. Li, X. Wen, C. You, et al.. Effects of different dietary oil sources on growth performance, antioxidant capacity and lipid deposition of juvenile golden pompano Trachinotus ovatus. Aquaculture, 530 ( 2021), Article 735923
|
[29] |
N. Arias-Jayo, L. Abecia, J.L. Lavín, I. Tueros, S. Arranz, A. Ramírez-García, et al.. Host-microbiome interactions in response to a high-saturated fat diet and fish-oil supplementation in zebrafish adult. J Funct Foods, 60 ( 2019), Article 103416
|
[30] |
X. Liu, H. Shi, Q. He, F. Lin, Q. Wang, S. Xiao, et al.. Effect of starvation and refeeding on growth, gut microbiota and non-specific immunity in hybrid grouper ( Epinephelus fuscoguttatus♀× E. lanceolatus♂). Fish Shellfish Immunol, 97 ( 2020), pp. 182-193 DOI: 10.1049/iet-stg.2019.0202
|
[31] |
N.T. Tran, F. Xiong, Y. Hao, J. Zhang, S. Wu, G. Wang. Starvation influences the microbiota assembly and expression of immunity-related genes in the intestine of grass carp (Ctenopharyngodon idellus). Aquaculture, 489 ( 2018), pp. 121-129
|
[32] |
M. Mekuchi, T. Asakura, K. Sakata, T. Yamaguchi, K. Teruya, J. Kikuchi. Intestinal microbiota composition is altered according to nutritional biorhythms in the leopard coral grouper ( Plectropomus leopardus). PLoS One, 13 (6) ( 2018), p. e0197256. DOI: 10.1371/journal.pone.0197256
|
[33] |
C. Talwar, S. Nagar, R. Lal, R.K. Negi. Fish gut microbiome: current approaches and future perspectives. Indian J Microbiol, 58 (4) ( 2018), pp. 397-414. DOI: 10.1007/s12088-018-0760-y
|
[34] |
A. Zeng, K. Tan, P. Gong, P. Lei, Z. Guo, S. Wang, et al.. Correlation of microbiota in the gut of fish species and water. 3 Biotech, 10 (11) ( 2020), p. 472
|
[35] |
F.E. Sylvain, B. Cheaib, M. Llewellyn, T.G. Correia, D.B. Fagundes, A.L. Val, et al.. pH drop impacts differentially skin and gut microbiota of the Amazonian fish tambaqui (Colossoma macropomum). Sci Rep, 6 ( 2016), p. 32032
|
[36] |
R.I. Vestrum, K.J.K. Attramadal, P. Winge, K. Li, Y. Olsen, A.M. Bones, et al.. Rearing water treatment induces microbial selection influencing the microbiota and pathogen associated transcripts of Cod (Gadus morhua) larvae. Front Microbiol, 9 ( 2018), p. 851
|
[37] |
S. Bi, H. Lai, D. Guo, X. Liu, G. Wang, X. Chen, et al.. The characteristics of intestinal bacterial community in three omnivorous fishes and their interaction with microbiota from habitats. Microorganisms, 9 (10) ( 2021), p. 2125. DOI: 10.3390/microorganisms9102125
|
[38] |
J. Horlick, M.A. Booth, S.G. Tetu. Alternative dietary protein and water temperature influence the skin and gut microbial communities of yellowtail kingfish ( Seriola lalandi). PeerJ, 8 ( 2020), p. e8705. DOI: 10.7717/peerj.8705
|
[39] |
R.O. Fossmark, K.J.K. Attramadal, K. Nordøy, S.W. Østerhus, O. Vadstein. A comparison of two seawater adaptation strategies for Atlantic salmon post-smolt (Salmo salar) grown in recirculating aquaculture systems (RAS): nitrification, water and gut microbiota, and performance of fish. Aquaculture, 532 ( 2021), Article 735973
|
[40] |
D.Q. Hieu, B.T.B. Hang, J. Lokesh, M.M. Garigliany, D.T.T. Huong, D.T. Yen, et al.. Salinity significantly affects intestinal microbiota and gene expression in striped catfish juveniles. Appl Microbiol Biotechnol, 106 (8) ( 2022), pp. 3245-3264. DOI: 10.1007/s00253-022-11895-1
|
[41] |
K.P. Lai, X. Lin, N. Tam, J.C.H. Ho, M.K.S. Wong, J. Gu, et al.. Osmotic stress induces gut microbiota community shift in fish. Environ Microbiol, 22 (9) ( 2020), pp. 3784-3802. DOI: 10.1111/1462-2920.15150
|
[42] |
C. Zhou, S. Yang, W. Ka, P. Gao, Y. Li, R. Long, et al.. Association of gut microbiota with metabolism in rainbow trout under acute heat stress. Front Microbiol, 13 ( 2022), Article 846336
|
[43] |
I. Guerreiro, P. Enes, A. Rodiles, D. Merrifield, A. Oliva-Teles. Effects of rearing temperature and dietary short-chain fructo-oligosaccharides supplementation on allochthonous gut microbiota, digestive enzymes activities and intestine health of turbot ( Scophthalmus maximus L.) juveniles. Aquacult Nutr, 22 (3) ( 2016), pp. 631-642. DOI: 10.1111/anu.12277
|
[44] |
H. Lv, Y. Liu, H. Li, X. Yin, P. Wang, X. Qu, et al.. Modulation of antioxidant enzymes, heat shock protein, and intestinal microbiota of large yellow croaker (Larimichthys crocea) under acute cold stress. Front Mar Sci, 8 ( 2021), Article 725899
|
[45] |
F. Kokou, G. Sasson, T. Nitzan, A. Doron-Faigenboim, S. Harpaz, A. Cnaani, et al.. Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. eLife, 7 ( 2018), p. e36398
|
[46] |
K. Rudi, I.L. Angell, P.B. Pope, J.O. Vik, S.R. Sandve, L. Snipen. Stable core gut microbiota across the freshwater-to-saltwater transition for farmed Atlantic salmon. Appl Environ Microb, 84 (2) ( 2018), pp. e01974-e2017
|
[47] |
B. Bojarski, B. Kot, M. Witeska. Antibacterials in aquatic environment and their toxicity to fish. Pharmaceuticals, 13 (8) ( 2020), p. 188
|
[48] |
A. Assefa, F. Abunna. Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Vet Med Int, 2018 ( 2018), p. 5432497
|
[49] |
J.S. Sáenz, T.V. Marques, R.S.C. Barone, J.E.P. Cyrino, S. Kublik, J. Nesme, et al.. Oral administration of antibiotics increased the potential mobility of bacterial resistance genes in the gut of the fish Piaractus mesopotamicus. Microbiome, 7 (1) ( 2019), p. 24
|
[50] |
T.P.R.A. Legrand, S.R. Catalano, M.L. Wos-Oxley, J.W. Wynne, L.S. Weyrich, A.P.A. Oxley. Antibiotic-induced alterations and repopulation dynamics of yellowtail kingfish microbiota. Anim Microbiome, 2 (1) ( 2020), p. 26
|
[51] |
D. Rosado, M. Pérez-Losada, R. Severino, R. Xavier. Monitoring infection and antibiotic treatment in the skin microbiota of farmed European seabass ( Dicentrarchus Labrax) fingerlings. Microb Ecol, 83 (3) ( 2022), pp. 789-797. DOI: 10.1007/s00248-021-01795-8
|
[52] |
D. Rosado, R. Xavier, R. Severino, F. Tavares, J. Cable, M. Pérez-Losada. Effects of disease, antibiotic treatment and recovery trajectory on the microbiome of farmed seabass (Dicentrarchus labrax). Sci Rep-UK, 9 (1) ( 2019), p. 18946
|
[53] |
S. Gupta, J. Fernandes, V. Kiron. Antibiotic-induced perturbations are manifested in the dominant intestinal bacterial phyla of Atlantic salmon. Microorganisms, 7 (8) ( 2019), p. 233
|
[54] |
A. Kim, N. Kim, H.J. Roh, W. Chun, D.T. Ho, Y. Lee, et al.. Administration of antibiotics can cause dysbiosis in fish gut. Aquaculture, 512 ( 2019), Article 734330
|
[55] |
V. Schmidt, M. Gomez-Chiarri, C. Roy, K. Smith, L. Amaral-Zettler. Subtle microbiome manipulation using probiotics reduces antibiotic-associated mortality in fish. mSystems, 2 (6) ( 2017), pp. e00133-e217
|
[56] |
E. Wang, Z. Yuan, K. Wang, D. Gao, Z. Liu, M.R. Liles. Consumption of florfenicol-medicated feed alters the composition of the channel catfish intestinal microbiota including enriching the relative abundance of opportunistic pathogens. Aquaculture, 501 ( 2019), pp. 111-118
|
[57] |
H.J. Patil, A. Benet-Perelberg, A. Naor, M. Smirnov, T. Ofek, A. Nasser, et al.. Evidence of increased antibiotic resistance in phylogenetically-diverse Aeromonas isolates from semi-intensive fish ponds treated with antibiotics. Front Microbiol, 7 ( 2016), p. 1875
|
[58] |
B. Sun, H. Yang, W. He, D. Tian, H. Kou, K. Wu, et al.. A grass carp model with an antibiotic-disrupted intestinal microbiota. Aquaculture, 541 ( 2021), Article 736790
|
[59] |
D. Bozzi, J.A. Rasmussen, C. Carøe, H. Sveier, K. Nordøy, M.T.P. Gilbert, et al.. Salmon gut microbiota correlates with disease infection status: potential for monitoring health in farmed animals. Anim Microbiome, 3 (1) ( 2021), p. 30
|
[60] |
De La Torre Canny SG, Mueller O, Craciunescu CV, Blumberg B, Rawls JF. Tributyltin exposure leads to increased adiposity and reduced abundance of leptogenic bacteria in the zebrafish intestine; 2021.
|
[61] |
R.L. Butt, H. Volkoff. Gut microbiota and energy homeostasis in fish. Front Endocrinol, 10 ( 2019), p. 9
|
[62] |
Y. Liu, X. Li, J. Li, W. Chen. The gut microbiome composition and degradation enzymes activity of black Amur bream ( Megalobrama terminalis) in response to breeding migratory behavior. Ecol Evol, 11 (10) ( 2021), pp. 5150-5163. DOI: 10.1002/ece3.7407
|
[63] |
Y. Sheng, H. Ren, S.M. Limbu, Y. Sun, F. Qiao, W. Zhai, et al.. The presence or absence of intestinal microbiota affects lipid deposition and related genes expression in zebrafish (Danio rerio). Front Microbiol, 9 ( 2018), p. 1124
|
[64] |
I. Semova, J.D. Carten, J. Stombaugh, L.C. Mackey, R. Knight, S.A. Farber, et al.. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe, 12 (3) ( 2012), pp. 277-288
|
[65] |
X. Guo, C. Ran, Z. Zhang, S. He, M. Jin, Z. Zhou. The growth-promoting effect of dietary nucleotides in fish is associated with an intestinal microbiota-mediated reduction in energy expenditure. J Nutr, 147 (5) ( 2017), pp. 781-788. DOI: 10.3945/jn.116.245506
|
[66] |
M.L. Zhang, M. Li, Y. Sheng, F. Tan, L. Chen, I. Cann, et al.. Citrobacter species increase energy harvest by modulating intestinal microbiota in fish: nondominant species play important functions. mSystems, 5 (3) ( 2020), pp. e00303-20
|
[67] |
J. Wen, G.P. Mercado, A. Volland, H.L. Doden, C.R. Lickwar, T. Crooks, et al.. Fxr signaling and microbial metabolism of bile salts in the zebrafish intestine. Sci Adv, 7(30):eabg1371 ( 2021)
|
[68] |
B. Pardesi, A.M. Roberton, K.C. Lee, E.R. Angert, D.I. Rosendale, S. Boycheva, et al.. Distinct microbiota composition and fermentation products indicate functional compartmentalization in the hindgut of a marine herbivorous fish. Mol Ecol, 31 (8) ( 2022), pp. 2494-2509. DOI: 10.1111/mec.16394
|
[69] |
Y.T. Hao, S.G. Wu, I. Jakovlić, H. Zou, W.X. Li, G.T. Wang. Impacts of diet on hindgut microbiota and short-chain fatty acids in grass carp ( Ctenopharyngodon idellus). Aquacult Res, 48 (11) ( 2017), pp. 5595-5605. DOI: 10.1111/are.13381
|
[70] |
J. Petit, I. de Bruijn, M.R.G. Goldman, E. van den Brink, W.F. Pellikaan, M. Forlenza, et al.. β-glucan-induced immuno-modulation: a role for the intestinal microbiota and short-chain fatty acids in common carp. Front Immunol, 12 ( 2022), Article 761820
|
[71] |
R. Xu, M. Li, T. Wang, Y. Zhao, C. Shan, F. Qiao, et al.. Bacillus amyloliquefaciens ameliorates high-carbohydrate diet-induced metabolic phenotypes by restoration of intestinal acetate-producing bacteria in Nile tilapia. Br J Nutr, 127 (5) ( 2022), pp. 653-665. DOI: 10.1017/s0007114521001318
|
[72] |
M. Bergamaschi, F. Tiezzi, J. Howard, Y.J. Huang, K.A. Gray, C. Schillebeeckx, et al.. Gut microbiome composition differences among breeds impact feed efficiency in swine. Microbiome, 8 (1) ( 2020), p. 110
|
[73] |
K.M. Singh, T.M. Shah, B. Reddy, S. Deshpande, D.N. Rank, C.G. Joshi. Taxonomic and gene-centric metagenomics of the fecal microbiome of low and high feed conversion ratio (FCR) broilers. J Appl Genet, 55 (1) ( 2014), pp. 145-154. DOI: 10.1007/s13353-013-0179-4
|
[74] |
I. Adeshina, M.I. Abubakar, B.E. Ajala. Dietary supplementation with Lactobacillus acidophilus enhanced the growth, gut morphometry, antioxidant capacity, and the immune response in juveniles of the common carp. Cyprinus carpio. Fish Physiol Biochem, 46 (4) ( 2020), pp. 1375-1385. DOI: 10.1007/s10695-020-00796-7
|
[75] |
K. Amoah, Q. Huang, B. Tan, S. Zhang, S. Chi, Q. Yang, et al.. Dietary supplementation of probiotic Bacillus coagulans ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp,. Litopenaeus vannamei. Fish Shellfish Immunol, 87 ( 2019), pp. 796-808
|
[76] |
A. Bunnoy, U. Na-Nakorn, P. Srisapoome. Probiotic effects of a novel strain, Acinetobacter KU011TH, on the growth performance, immune responses, and resistance against Aeromonas hydrophila of bighead catfish ( Clarias macrocephalus Günther, 1864). Microorganisms, 7 (12) ( 2019), p. 613. DOI: 10.3390/microorganisms7120613
|
[77] |
H. Dvergedal, S.R. Sandve, I.L. Angell, G. Klemetsdal, K. Rudi. Association of gut microbiota with metabolism in juvenile Atlantic salmon. Microbiome, 8 (1) ( 2020), p. 160
|
[78] |
M. Kanther, X. Sun, M. Mühlbauer, L.C. Mackey, E.J. Flynn, M. Bagnat, et al.. Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract. Gastroenterology, 141 (1) ( 2011), pp. 197-207
|
[79] |
B.E.V. Koch, S. Yang, G. Lamers, J. Stougaard, H.P. Spaink. Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88. Nat Commun, 9 (1) ( 2018), p. 4099
|
[80] |
A.S. Rolig, E.G. Sweeney, L.E. Kaye, M.D. DeSantis, A. Perkins, A.V. Banse, et al.. A bacterial immunomodulatory protein with lipocalin-like domains facilitates host-bacteria mutualism in larval zebrafish. eLife, 7 ( 2018), p. e37172
|
[81] |
C. Shan, M. Li, Z. Liu, R. Xu, F. Qiao, Z.Y. Du, et al.. Pediococcus pentosaceus enhances host resistance against pathogen by increasing IL-1β production: understanding probiotic effectiveness and administration duration. Front Immunol, 12 ( 2021), Article 766401
|
[82] |
D. Phelps, N.E. Brinkman, S.P. Keely, E.M. Anneken, T.R. Catron, D. Betancourt, et al.. Microbial colonization is required for normal neurobehavioral development in zebrafish. Sci Rep, 7 (1) ( 2017), p. 11244
|
[83] |
E. Casadei, L. Tacchi, C.R. Lickwar, S.T. Espenschied, J.M. Davison, P. Muñoz, et al.. Commensal bacteria regulate gene expression and differentiation in vertebrate olfactory systems through transcription factor rest. Chem Senses, 44 (8) ( 2019), pp. 615-630. DOI: 10.1093/chemse/bjz050
|
[84] |
G. Gioacchini, E. Ciani, A. Pessina, C. Cecchini, S. Silvi, A. Rodiles, et al.. Effects of lactogen 13, a new probiotic preparation, on gut microbiota and endocrine signals controlling growth and appetite of Oreochromis niloticus juveniles. Microb Ecol, 76 (4) ( 2018), pp. 1063-1074
|
[85] |
A.M. Earley, C.L. Graves, C.E. Shiau. Critical role for a subset of intestinal macrophages in shaping gut microbiota in adult zebrafish. Cell Rep, 25 (2) ( 2018), pp. 424-436
|
[86] |
K.M. Nutsch, C.S. Hsieh. T cell tolerance and immunity to commensal bacteria. Curr Opin Immunol, 24 (4) ( 2012), pp. 385-391
|
[87] |
Y. Okamura, N. Morimoto, D. Ikeda, N. Mizusawa, S. Watabe, H. Miyanishi, et al.. Interleukin-17A/F1 deficiency reduces antimicrobial gene expression and contributes to microbiome alterations in intestines of Japanese medaka (Oryzias latipes). Front Immunol, 11 ( 2020), p. 425
|
[88] |
Z. Xu, F. Takizawa, E. Casadei, Y. Shibasaki, Y. Ding, T.J.C. Sauters, et al.. Specialization of mucosal immunoglobulins in pathogen control and microbiota homeostasis occurred early in vertebrate evolution. Sci Immunol, 5(44):eaay3254 ( 2020)
|
[89] |
P. Perdiguero, A. Martín-Martín, O. Benedicenti, P. Díaz-Rosales, E. Morel, E. Muñoz-Atienza, et al.. Teleost IgD+IgM-B cells mount clonally expanded and mildly mutated intestinal IgD responses in the absence of lymphoid follicles. Cell Rep, 29 (13) ( 2019), pp. 4223-4235.e5
|
[90] |
C.D. Robinson, E.G. Sweeney, J. Ngo, E. Ma, A. Perkins, T.J. Smith, et al.. Host-emitted amino acid cues regulate bacterial chemokinesis to enhance colonization. Cell Host Microbe, 29 (8) ( 2021), pp. 1221-1234.e8
|
[91] |
L. Gong, H. He, D. Li, L. Cao, T.A. Khan, Y. Li, et al.. A new isolate of Pediococcus pentosaceus (SL001) with antibacterial activity against fish pathogens and potency in facilitating the immunity and growth performance of grass carps. Front Microbiol, 10 ( 2019), p. 1384
|
[92] |
P. Zhou, W. Chen, Z. Zhu, K. Zhou, S. Luo, S. Hu, et al.. Comparative study of Bacillus amyloliquefaciens X030 on the intestinal flora and antibacterial activity against Aeromonas of grass carp. Front Cell Infect Mi, 12 ( 2022), Article 815436
|
[93] |
T.A.N. Pham, T.D. Lawley. Emerging insights on intestinal dysbiosis during bacterial infections. Curr Opin Microbiol, 17 ( 2014), pp. 67-74
|
[94] |
C. Sequeiros, M.E. Garcés, M. Vallejo, E.R. Marguet, N.L. Olivera. Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae. Arch Microbiol, 197 (3) ( 2015), pp. 449-458. DOI: 10.1007/s00203-014-1076-x
|
[95] |
C.B. Schubiger, L.H. Orfe, P.S. Sudheesh, K.D. Cain, D.H. Shah, D.R. Call. Entericidin is required for a probiotic treatment (Enterobacter sp. strain C6-6) to protect trout from cold-water disease challenge. Appl Environ Microbiol, 81 (2) ( 2015), pp. 658-665
|
[96] |
P. Smith, S. Davey. Evidence for the eompetitive exclusion of Aeromonas salmonicida from fish with stress-inducible furunculosis by a fiuorescent pseudomonad. J Fish Dis, 16 (5) ( 1993), pp. 521-524. DOI: 10.1111/j.1365-2761.1993.tb00888.x
|
[97] |
J.K. Goodrich, E.R. Davenport, J.L. Waters, A.G. Clark, R.E. Ley. Cross-species comparisons of host genetic associations with the microbiome. Science, 352 (6285) ( 2016), pp. 532-535. DOI: 10.1126/science.aad9379
|
[98] |
F.A. Stressmann, J. Bernal-Bayard, D. Perez-Pascual, B. Audrain, O. Rendueles, V. Briolat, et al.. Mining zebrafish microbiota reveals key community-level resistance against fish pathogen infection. ISME J, 15 (3) ( 2021), pp. 702-719. DOI: 10.1038/s41396-020-00807-8
|
[99] |
D. Pérez-Pascual, S. Vendrell-Fernández, B. Audrain, J. Bernal-Bayard, R. Patiño-Navarrete, V. Petit, et al.. Gnotobiotic rainbow trout ( Oncorhynchus mykiss) model reveals endogenous bacteria that protect against Flavobacterium columnare infection. PLoS Pathog, 17 (1) ( 2021), p. e1009302. DOI: 10.1371/journal.ppat.1009302
|
[100] |
C. Wang, G. Sun, S. Li, X. Li, Y. Liu. Intestinal microbiota of healthy and unhealthy Atlantic salmon Salmo salar L. in a recirculating aquaculture system. Chin J Oceanology Limnol, 36 (2) ( 2018), pp. 414-426. DOI: 10.1007/s00343-017-6203-5
|
[101] |
B.R. Dos Santos Silva, M.S. Derami, D.A. Paixão, G.F. Persinoti, W.D. da Silveira, R.P. Maluta. Comparison between the intestinal microbiome of healthy fish and fish experimentally infected with Streptococcus agalactiae. Aquacult Res, 51 (8) ( 2020), pp. 3412-3420
|
[102] |
Q. Zhang, H. Li, W. Wu, M. Zhang, J. Guo, X. Deng, et al.. The response of microbiota community to Streptococcus agalactiae infection in zebrafish intestine. Front Microbiol, 10 ( 2019), p. 2848
|
[103] |
L. Zhou, J. Wei, K. Lin, L. Gan, J. Wang, J. Sun, et al.. Intestinal microbial profiling of grass carp (Ctenopharyngodon idellus) challenged with Aeromonas hydrophila. Aquaculture, 524 ( 2020), Article 735292
|
[104] |
M.S. Llewellyn, S. Leadbeater, C. Garcia, F.E. Sylvain, M. Custodio, K.P. Ang, et al.. Parasitism perturbs the mucosal microbiome of Atlantic salmon. Sci Rep, 7 (1) ( 2017), p. 43465
|
[105] |
A. Vasemägi, M. Visse, V. Kisand. Effect of environmental factors and anemerging parasitic disease on gut microbiome of wild salmonid fish. MSphere, 2 (6) ( 2017), pp. e00418-517
|
[106] |
A.L. Nadal, W. Ikeda-Ohtsubo, D. Sipkema, D. Peggs, C. McGurk, M. Forlenza, et al.. Feed, microbiota, and gut immunity: using the zebrafish model to understand fish health. Front Immunol, 11 ( 2020), p. 114
|
[107] |
P.M. Elks, F.J. van Eeden, G. Dixon, X. Wang, C.C. Reyes-Aldasoro, P.W. Ingham, et al.. Activation of hypoxia-inducible factor-1α (Hif-1α) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood, 118 (3) ( 2011), pp. 712-722. DOI: 10.1182/blood-2010-12-324186
|
[108] |
L. Zang, L.A. Maddison, W. Chen. Zebrafish as a model for obesity and diabetes. Front Cell Dev Biol, 6 ( 2018), p. 91
|
[109] |
L. Zang, Y. Shimada, N. Nishimura. Development of a novel zebrafish model for type2 diabetes mellitus. Sci Rep, 7 (1) ( 2017), p. 1461
|
[110] |
K. Landgraf, S. Schuster, A. Meusel, A. Garten, T. Riemer, D. Schleinitz, et al.. Short-term overfeeding of zebrafish with normal or high-fat diet as a model for the development of metabolically healthy versus unhealthy obesity. BMC Physiol, 17 (1) ( 2017), p. 4
|
[111] |
M.L. Situmorang, K. Dierckens, F.T. Mlingi, B. Van Delsen, P. Bossier. Development of a bacterial challenge test for gnotobiotic Nile tilapia Oreochromis niloticus larvae. Dis Aquat Organ, 109 (1) ( 2014), pp. 23-33. DOI: 10.3354/dao02721
|
[112] |
K. Dierckens, A. Rekecki, S. Laureau, P. Sorgeloos, N. Boon, W. Van den Broeck, et al.. Development of a bacterial challenge test for gnotobiotic sea bass ( Dicentrarchus labrax) larvae. Environ Microbiol, 11 (2) ( 2009), pp. 526-533. DOI: 10.1111/j.1462-2920.2008.01794.x
|
[113] |
Z. Liu, W. Liu, C. Ran, J. Hu, Z. Zhou. Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis. Sci Rep, 6 (1) ( 2016), p. 23214
|
[114] |
S. He, C. Ran, C. Qin, S. Li, H. Zhang, W.M. de Vos, et al.. Anti-infective effect of adhesive probiotic Lactobacillus in fish is correlated with their spatial distribution in the intestinal tissue. Sci Rep, 7 (1) ( 2017), p. 13195
|
[115] |
M.X. Xie, W. Zhou, Y. Xie, Y. Li, Z. Zhang, Y.L. Yang, et al.. Effects of Cetobacterium somerae fermentation product on gut and liver health of common carp (Cyprinus carpio) fed diet supplemented with ultra-micro ground mixed plant proteins. Aquaculture, 543 ( 2021), Article 736943
|
[116] |
M. Xie, Y. Xie, Y. Li, W. Zhou, Z. Zhang, Y. Yang, et al.. Stabilized fermentation product of Cetobacterium somerae improves gut and liver health and antiviral immunity of zebrafish. Fish Shellfish Immunol, 120 ( 2022), pp. 56-66
|
[117] |
W. Zhou, M. Xie, Y. Xie, H. Liang, M. Li, C. Ran, et al.. Effect of dietary supplementation of Cetobacterium somerae XMX-1 fermentation product on gut and liver health and resistance against bacterial infection of the genetically improved farmed tilapia (GIFT, Oreochromis niloticus). Fish Shellfish Immunol, 124 ( 2022), pp. 332-342
|
[118] |
Y. Kong, M. Li, G. Chu, H. Liu, X. Shan, G. Wang, et al.. The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology. Aquaculture, 531 ( 2021), Article 735852
|
[119] |
L.B. Bindels, N.M. Delzenne, P.D. Cani, J. Walter. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol, 12 (5) ( 2015), pp. 303-310. DOI: 10.1038/nrgastro.2015.47
|
[120] |
G.R. Gibson, R. Hutkins, M.E. Sanders, S.L. Prescott, R.A. Reimer, S.J. Salminen, et al.. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol, 14 (8) ( 2017), pp. 491-502. DOI: 10.1038/nrgastro.2017.75
|
[121] |
E. Amenyogbe, G. Chen, Z. Wang, J. Huang, B. Huang, H. Li. The exploitation of probiotics, prebiotics and synbiotics in aquaculture: present study, limitations and future directions: a review. Aquacult Int, 28 (3) ( 2020), pp. 1017-1041. DOI: 10.1007/s10499-020-00509-0
|
[122] |
W. Yao, X. Li, C. Zhang, J. Wang, Y. Cai, X. Leng. Effects of dietary synbiotics supplementation methods on growth, intestinal health, non-specific immunity and disease resistance of Pacific white shrimp. Litopenaeus vannamei. Fish Shellfish Immunol, 112 ( 2021), pp. 46-55
|
[123] |
G. Chen, B. Yin, H. Liu, B. Tan, X. Dong, Q. Yang, et al.. Supplementing chitosan oligosaccharide positively affects hybrid grouper (Epinephelus fuscoguttatus♀ × E. lanceolatus ♂) fed dietary fish meal replacement with cottonseed protein concentrate: effects on growth, gut microbiota, antioxidant function and immune response. Front Mar Sci, 8 ( 2021), Article 707627
|
[124] |
S. Rimoldi, S. Torrecillas, D. Montero, E. Gini, A. Makol, V.V. Valdenegro, et al.. Assessment of dietary supplementation with galactomannan oligosaccharides and phytogenics on gut microbiota of European sea bass ( Dicentrarchus labrax) fed low fishmeal and fish oil based diet. PLoS One, 15 (4) ( 2020), p. e0231494. DOI: 10.1371/journal.pone.0231494
|
[125] |
W. Zhao, T. Yuan, C. Piva, E.J. Spinard, C.W. Schuttert, D.C. Rowley, et al.. The probiotic bacterium Phaeobacter inhibens down regulates virulence factor transcription in the shellfish pathogen Vibrio coralliilyticus by N-Acyl homoserine lactone production. Appl Environ Microbiol, 85 (2) ( 2019), pp. e01545-e1618
|
[126] |
W. Dong, Y. Cai, Z. Xu, B. Fu, Q. Chen, Y. Cui, et al.. Heterologous expression of AHL lactonase AiiK by Lactobacillus casei MCJΔ1 with great quorum quenching ability against Aeromonas hydrophila AH-1 and AH-4. Microb Cell Fact, 19 (1) ( 2020), p. 191
|
[127] |
B. Chen, M. Peng, W. Tong, Q. Zhang, Z. Song. The quorum quenching bacterium Bacillus licheniformis T-1 protects zebrafish against Aeromonas hydrophila infection. Probiotics Antimicrob Proteins, 12 (1) ( 2020), pp. 160-171. DOI: 10.1007/s12602-018-9495-7
|
[128] |
Z. Zhang, C. Ran, Q. Ding, H. Liu, M. Xie, Y. Yang, et al.. Ability of prebiotic polysaccharides to activate a HIF1α-antimicrobial peptide axis determines liver injury risk in zebrafish. Commun Biol, 2 (1) ( 2019), p. 274
|
[129] |
I.N. Vatsos. Standardizing the microbiota of fish used in research. Lab Anim, 51 (4) ( 2017), pp. 353-364. DOI: 10.1177/0023677216678825
|